2002) and football kick (25°) (Smith and Gilleard,
2015). In comparison, SEBT does not challenge hip
extension. Both hip internal and external rotation are
at the lower end of ROM reference values. The
rotational values are greater than the internal (4.3°-
8.0°) and external rotation (5.2°-23.5°) values
reported for the SEBT (Doherty et al., 2015; Kang et
al., 2015; Robinson and Gribble, 2008). Hip
adduction is within ROM reference values and
greater than what has been found with the SEBT
(15) (Doherty et al., 2015). Hip abduction is less
than ROM reference values, but similar to SEBT
(15) (Robinson and Gribble, 2008).
Spine movements elicited by the HSEBT are
representative of both lumbar and thoracic spine
movement. The HSEBT is able to elicit flexion and
lateral flexion within, and extension, and rotation
just outside range of ROM reference values (Magee,
2006). SEBT do not elicit spine movements within
ROM reference values. However, selected
movements do predict reach distance (Kang et al.,
2015), which might indicate their importance in
balance and postural adjustments.
HSEBT elicits unique combinations of
movements in ankle joint complex, knee, hip and
spine. Observed joint movements, nine of twenty-
two possible, were within the ranges of goniometric
ROM reference values, while two (ankle
dorsiflexion and hip extension) where greater. In
comparison to the SEBT, the HSEBT elicits similar
or lower values for the ankle, but greater values for
the knee, hip and spine. In addition, hip extension
and spine movements are elicited by the HSEBT and
not SEBT. HSEBT offers a new and promising
approach to functional mobility testing that
integrates the full kinematic chain.
REFERENCES
Almquist, P. O., Arnbjornsson, A., Zatterstrom, R., Ryd,
L., Ekdahl, C., & Friden, T. (2002). Evaluation of an
external device measuring knee joint rotation: an in
vivo study with simultaneous Roentgen stereometric
analysis. Journal of orthopaedic research : official
publication of the Orthopaedic Research Society,
20(3), 427-432. doi:10.1016/S0736-0266(01)00148-6
Boone, D. C., & Azen, S. P. (1979). Normal range of
motion of joints in male subjects. J.Bone Joint
Surg.Am., 61(5), 756-759. Retrieved from PM:457719
Craib, M. W., Mitchell, V. A., Fields, K. B., Cooper, T.
R., Hopewell, R., & Morgan, D. W. (1996). The
association between flexibility and running economy
in sub-elite male distance runners. Med.Sci.Sports
Exerc., 28(6), 737-743. Retrieved from PM:8784761
Delahunt, E., Chawke, M., Kelleher, J., Murphy, K.,
Prendiville, A., Sweeny, L., & Patterson, M. (2013).
Lower limb kinematics and dynamic postural stability
in anterior cruciate ligament-reconstructed female
athletes. Journal of athletic training, 48(2), 172-185.
doi:10.4085/1062-6050-48.2.05
Doherty, C., Bleakley, C. M., Hertel, J., Caulfield, B.,
Ryan, J., & Delahunt, E. (2015). Laboratory Measures
of Postural Control During the Star Excursion Balance
Test After Acute First-Time Lateral Ankle Sprain.
Journal of athletic training, 50(6), 651-664.
doi:10.4085/1062-6050-50.1.09
Ford, K. R., Myer, G. D., Toms, H. E., & Hewett, T. E.
(2005). Gender differences in the kinematics of
unanticipated cutting in young athletes. Med Sci
Sports Exerc, 37(1), 124-129. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/15632678
Freedman Silvernail, J., Boyer, K., Rohr, E., Bruggemann,
G. P., & Hamill, J. (2015). Running Mechanics and
Variability with Aging. Med Sci Sports Exerc.
doi:10.1249/MSS.0000000000000633
Greene, W., & Heckman, J. D. (1994). The clinical
measurement of joint motion. Rosemont, IL: American
Academy of Orthopedic Surgeons.
Gribble, P. A., Hertel, J., & Plisky, P. (2012). Using the
Star Excursion Balance Test to assess dynamic
postural-control deficits and outcomes in lower
extremity injury: a literature and systematic review.
Journal of athletic training, 47(3), 339-357.
doi:10.4085/1062-6050-47.3.08
Hubbard, T. J., Kramer, L. C., Denegar, C. R., & Hertel, J.
(2007). Contributing factors to chronic ankle
instability. Foot Ankle Int, 28(3), 343-354.
doi:10.3113/FAI.2007.0343
Kang, M. H., Kim, G. M., Kwon, O. Y., Weon, J. H., Oh,
J. S., & An, D. H. (2015). Relationship Between the
Kinematics of the Trunk and Lower Extremity and
Performance on the Y-Balance Test. PM & R : the
journal of injury, function, and rehabilitation.
doi:10.1016/j.pmrj.2015.05.004
Kivi, D. M., Maraj, B. K., & Gervais, P. (2002). A
kinematic analysis of high-speed treadmill sprinting
over a range of velocities. Med Sci Sports Exerc,
34(4), 662-666. Retrieved from http://
www.ncbi.nlm.nih.gov/pubmed/11932576
Levangie, P. K., & Norkin, C. C. (2011). Joint Structure
and function a comprehensive analysis, 5th Ed.
Philadelphia, PA: F. A. Davis Company.
Lindsjo, U., Danckwardt-Lilliestrom, G., & Sahlstedt, B.
(1985). Measurement of the motion range in the
loaded ankle. Clinical orthopaedics and related
research
(199), 68-71. Retrieved from http://
www.ncbi.nlm.nih.gov/pubmed/4042498
Macedo, L. G., & Magee, D. J. (2009). Effects of age on
passive range of motion of selected peripheral joints in
healthy adult females. Physiother Theory Pract, 25(2),
145-164. doi:10.1080/09593980802686870
Magee, D. J. (2006). Orthopedic physical assessment, 4th
Ed: Saunder, Philadelphia, PA. (Reprinted from: NOT
IN FILE).