Past and Recent Endeavours to Simulate Caenorhabditis elegans

Alexey Petrushin, Lorenzo Ferrara, Axel Blau

2015

Abstract

Biological nervous systems are robust and highly adaptive information processing entities that excel current computer architectures in almost all aspects of sensory-motor integration. While they are slow and inefficient in the serial processing of stimuli or data chains, they outperform artificial computational systems in seemingly ordinary pattern recognition, orientation or navigation tasks. Even one of the simplest nervous systems in nature, that of the hermaphroditic nematode Caenorhabditis elegans with just 302 neurons and less than 8,000 synaptic connections, gives rise to a rich behavioural repertoire that – among controlling vital functions - encodes different locomotion modalities (crawling, swimming and jumping). It becomes evident that both robotics and information and computation technology (ICT) would strongly benefit if the working principles of nervous systems could be extracted and applied to the engineering of brain-mimetic computational architectures. C. elegans, being one of the five best-characterized animal model systems, promises to serve as the most manageable organism to elucidate the information coding and control mechanisms that give rise to complex behaviour. This short paper reviews past and present endeavours to reveal and harvest the potential of nervous system function in C. elegans.

References

  1. Achacoso, T., & Yamamoto, W. (1992). AY's Neuroanatomy of C. elegans for Computation (pp. 304): CRS Press, Boca Raton, FL.
  2. Altun, Z. F., & Hall, D. H. (2009). Wormatlas - A database featuring behavioral and structural anatomy of Caenorhabditis elegans. Retrieved from http://www.wormatlas.org/hermaphrodite/hermaphrod itehomepage.htm
  3. Bargmann, C. I., & Marder, E. (2013). From the connectome to brain function. Nat Meth, 10(6), 483- 490.
  4. Bono, M. d., & Villu Maricq, A. (2005). Neuronal substrates of complex behaviors in C. elegans. Annual Review of Neuroscience, 28(1), 451-501.
  5. Boyle, J. H., Berri, S., & Cohen, N. (2012). Gait modulation in C. elegans: An integrated neuromechanical model. Frontiers in Computational Neuroscience, 6.
  6. Boyle, J. H., & Cohen, N. (2008). Caenorhabditis elegans body wall muscles are simple actuators. BioSystems, 94(1-2), 170-181.
  7. Brenner, S. (1963). Proposal to the Medical Research Council, Appendix I - Differentiation in a Nematode Worm.
  8. Claverol, E., Cannon, R., Chad, J., et al. (1999). Event based neuron models for biological simulation. A model of the locomotion circuitry of the nemotode C. elegans. Computational Intelligence and Applications, World Scientific Engineering Society Press.
  9. Cohen, N., & Sanders, T. (2014). Nematode locomotion: dissecting the neuronal-environmental loop. Current Opinion in Neurobiology, 25(0), 99-106.
  10. Corsi, A. K., Wightman, B., & Chalfie, M. (2015). A Transparent Window into Biology: A Primer on Caenorhabditis elegans. Genetics, 200(2), 387-407.
  11. Deng, X., & Xu, J.-X. (2014). A 3D undulatory locomotion model inspired by C. elegans through DNN approach. Neurocomputing, 131, 248-264.
  12. Epstein, H. F., & Shakes, D. C. (1995). Caenorhabditis elegans : modern biological analysis of an organism (Vol. 48). San Diego: Academic Press.
  13. Ferree, T. C., & Lockery, S. R. (1999). Computational rules for chemotaxis in the nematode C. elegans. Journal of Computational Neuroscience, 6(3), 263- 277.
  14. Friston, K. J. (2011). Functional and Effective Connectivity: A Review. Brain Connectivity, 1(1),13-36
  15. Gjorgjieva, J., Biron, D., & Haspel, G. (2014). Neurobiology of Caenorhabditis elegans Locomotion: Where Do We Stand? Bioscience, 11.
  16. Grove, C. A., & Sternberg, P. W. (2011). The Virtual Worm: A Three-Dimensional Model of the Anatomy of Caenorhabditis elegans at Cellular Resolution. 18th International C. elegans Meeting.
  17. Hodgkin, A. L., & Huxley, A. F. (1952). A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve. Journal of Physiology, 117, 500-544.
  18. Izquierdo, E. J., & Beer, R. D. (2013). Connecting a Connectome to Behavior: An Ensemble of Neuroanatomical Models of C. elegans Klinotaxis. PLoS Computational Biology, 9(2), e1002890.
  19. Kitano, H., Hamahashi, S., & Luke, S. (1998). The Perfect C. elegans Project: An Initial Report. Artificial Life, 4(2), 141-156.
  20. Krewer, F., Coffey, A., Callaly, F., et al. (2014). Neuron models in FPGA hardware: A route from high level descriptions to hardware implementations. 2nd International Congress on Neurotechnology, Electronics and Informatics, Rome, Italy.
  21. Lockery, S. R. (2011). The computational worm: spatial orientation and its neuronal basis in C. elegans. Current Opinion in Neurobiology, 21(5), 782-790.
  22. Machado, P., Wade, J., & McGinnity, T. M. (2014). Si elegans: FPGA hardware emulation of C. elegans nematode nervous system. Sixth World Congress onNature and Biologically Inspired Computing (NaBIC).
  23. Machado, P., Wade, J. J., Appiah, K., et al. (2015). Si elegans: Hardware Architecture and Communications Protocol. International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland.
  24. Marblestone, A. H., Zamft, B. M., Maguire, Y. G., et al. (2013). Physical Principles for Scalable Neural Recording. Frontiers in Computational Neuroscience, 7.
  25. Marder, E., & Taylor, A. L. (2011). Multiple models to capture the variability in biological neurons and networks. Nature Neuroscience, 14(2), 133-138.
  26. Morse, T. M., Lockery, S. R., & Ferrée, T. C. (1998). Robust Spatial Navigation in a Robot Inspired by Chemotaxis in Caenorhabditis elegans. Adaptive Behavior, 6(3-4), 393-410.
  27. Mujika, A., Epelde, G., Mauro, A. D., et al. (2014). Visualization of a Virtual Caenorhabditis elegans inWebGL. 2nd International Congress on Neurotechnology, Electronics and Informatics, Rome, Italy.
  28. OpenWorm browser. (2014). Retrieved from http:// browser.openworm.org/
  29. Palyanov, A., Khayrulin, S., Larson, S. D., et al. (2011). Towards a virtual C. elegans: a framework for simulation and visualization of the neuromuscular system in a 3D physical environment. In Silico Biology, 11(3-4), 137-147.
  30. Petrushin, A., Ferrara, L., & Blau, A. (2015). The Si elegans connectome: A neuromimetic emulation of neural signal transfer with DMD-structured light. SPIE Photonics West, Emerging Digital Micromirror Device Based Systems and Applications VII, Session 6: Novel and Emerging DMD Applications, San Francisco, USA.
  31. Petrushin, A., Ferrara, L., Liberale, C., et al. (2014). Towards an electro-optical emulation of the C. elegans connectome. 2nd International Congress on Neurotechnology, Electronics and Informatics, Rome, Italy.
  32. Portegys, T. E. (2015). Training sensory-motor behavior in the connectome of an artificial C. elegans. Neurocomputing, 168, 128-134.
  33. Riddle, D. L., Blumenthal, T., Meyer, B. J., et al. (1997). Introduction: The neural circuit for locomotion: Cold Spring Harbor Laboratory Press. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK19982/
  34. Schafer, W. R. (2015). Mechanosensory molecules and circuits in C. elegans. Pflügers Archiv - European Journal of Physiology, 467(1), 39-48.
  35. Schrödel, T., Prevedel, R., Aumayr, K., et al. (2013). Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nature Methods, 10(10), 1013-1020.
  36. Suzuki, M., Goto, T., Tsuji, T., et al. (2005). A Dynamic Body Model of the Nematode C. elegans with Neural Oscillators. Journal of Robotics and Mechatronics, 17(3), 318-326.
  37. Suzuki, M., Tsuji, T., & Ohtake, H. (2005a). A model of motor control of the nematode C. elegans with neuronal circuits. Artificial Intelligence in Medicine, 35(1-2), 75-86.
  38. Szigeti, B., Gleeson, P., Vella, M., et al. (2014). OpenWorm: an open-science approach to modelling Caenorhabditis elegans. Frontiers in Computational Neuroscience, 8, 15.
  39. White, J. G., Southgate, E., Thomson, J. N., et al. (1986). The Structure of the Nervous System of the Nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 314(1165), 1-340.
  40. Wormbook. (2015). A comprehensive, open-access collection of original, peer-reviewed chapters covering topics related to the biology of Caenorhabditis elegans and other nematodes. Retrieved from http://www. wormbook.org/
  41. Zhen, M., & Samuel, A. D. T. (2015). C. elegans locomotion: small circuits, complex functions. Current Opinion in Neurobiology, 33, 117-126.
Download


Paper Citation


in Harvard Style

Petrushin A., Ferrara L. and Blau A. (2015). Past and Recent Endeavours to Simulate Caenorhabditis elegans . In Proceedings of the 3rd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NeBICA, (NEUROTECHNIX 2015) ISBN 978-989-758-161-8, pages 133-137. DOI: 10.5220/0005712701330137


in Bibtex Style

@conference{nebica15,
author={Alexey Petrushin and Lorenzo Ferrara and Axel Blau},
title={Past and Recent Endeavours to Simulate Caenorhabditis elegans},
booktitle={Proceedings of the 3rd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NeBICA, (NEUROTECHNIX 2015)},
year={2015},
pages={133-137},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005712701330137},
isbn={978-989-758-161-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NeBICA, (NEUROTECHNIX 2015)
TI - Past and Recent Endeavours to Simulate Caenorhabditis elegans
SN - 978-989-758-161-8
AU - Petrushin A.
AU - Ferrara L.
AU - Blau A.
PY - 2015
SP - 133
EP - 137
DO - 10.5220/0005712701330137