control and real-time monitoring of internal signals.
This work is demonstrated at (Morgan et al, 2014).
ACKNOWLEDGEMENTS
This work has been completed as part of the Si
elegans project funded under FP7 FET initiative
NBIS (ICT-2011.9.11). This work is also supported
by the Irish Research Council.
REFERENCES
Blau, A., Callaly, F., Cawley, S., Coffey, A., De Mauro, A.,
Epelde, G. & Wade, J. (2014, October). Exploring
neural principles with Si elegans, a neuromimetic
representation of the nematode Caenorhabditis elegans.
In Proceedings of the 2nd International Congress on
Neurotechnology, Electronics and Informatics
(NEUROTECHNIX) (pp. 189-194).
Cannon, R. C., Gleeson, P., Crook, S., Ganapathy, G.,
Marin, B., Piasini, E., & Silver, R. A. (2014). LEMS: a
language for expressing complex biological models in
concise and hierarchical form and its use in
underpinning NeuroML 2. Frontiers in
neuroinformatics, 8.
Carrillo, S., Harkin, J., McDaid, L. J., Morgan, F., Pande,
S., Cawley, S., & McGinley, B. (2013). Scalable
hierarchical network-on-chip architecture for spiking
neural network hardware implementations. Parallel and
Distributed Systems, IEEE Transactions on, 24(12),
2451-2461.
Cawley, S., Morgan, F., McGinley, B., Pande, S., McDaid,
L., Carrillo, S., & Harkin, J. (2011). Hardware spiking
neural network prototyping and application. Genetic
Programming and Evolvable Machines, 12(3), 257-
280.
Glackin, B., McGinnity, T. M., Maguire, L. P., Wu, Q. X.,
& Belatreche, A. (2005). A novel approach for the
implementation of large scale spiking neural networks
on FPGA hardware. In Computational Intelligence and
Bioinspired Systems (pp. 552-563). Springer Berlin.
Khan, M. M., Lester, D. R., Plana, L. A., Rast, A., Jin, X.,
Painkras, E., & Furber, S. B. (2008, June). SpiNNaker:
mapping neural networks onto a massively-parallel
chip multiprocessor. In Neural N, 2008. (IEEE World
Congress on Computational Intelligence). IEEE
International Joint Conference on (pp. 2849-2856).
Krewer F., Coffey A., Callaly F. and Morgan F. (2014).
Neuron Models in FPGA Hardware - A Route from
High Level Descriptions to Hardware Implementations.
In Proceedings of the 2nd International Congress on
Neurotechnology, Electronics and Informatics, (pp
177-183)
Maher, J., Ginley, B. M., Rocke, P., & Morgan, F. (2006,
April). Intrinsic hardware evolution of neural networks
in reconfigurable analogue and digital devices. In Field-
Programmable Custom Computing Machines, 2006.
FCCM'06. 14th Annual IEEE Symposium on (pp. 321-
322). IEEE.
Morgan, F., Cawley, S., McGinley, B., Pande, S., McDaid,
L. J., Glackin, B., Maher, J. & Harkin, J. (2009,
December). Exploring the evolution of NoC-based
spiking neural networks on FPGAs. In Field-
Programmable Technology, 2009. FPT 2009.
International Conference on (pp. 300-303). IEEE.
Morgan, F. et al., FPGA NN Prototype Demonstrator
Videos. http://tiny.cc/SielegansD51, 2014
Pande, S., Morgan, F., McCawley, S., Ginley, B., Carrillo,
S., Harkin, J., & McDaid, L. (2010, September).
EMBRACE-SysC for analysis of NoC-based spiking
neural network architectures. In International
Symposium on System-on-Chip. IEEE.
Rocke, P., McGinley, B., Maher, J., Morgan, F., & Harkin,
J. (2008). Investigating the suitability of FPAAs for
evolved hardware spiking neural networks. In
Evolvable Systems: From Biology to Hardware (pp.
118-129). Springer Berlin Heidelberg.
Rocke, P., McGinley, B., Morgan, F., & Maher, J. (2007).
Reconfigurable hardware evolution platform for a
spiking neural network robotics controller. In
Reconfigurable computing: Architectures, tools and
applications (pp. 373-378). Springer Berlin Heidelberg.