search Fund for the Doctoral Program of Higher Ed-
ucation of China under Grant 20110211110026, and
the Fundamental Research Funds for the Central Uni-
versities of China under Grant lzujbky-2015-196.
REFERENCES
Arai, K., Abdullah, I. N., and Okumura, H. (2012). Auto-
mated detection method for clustered microcalcifica-
tion in mammogram image based on statistical textu-
ral features. Int. J. Adv. Comput. Sci. Appl., 3(5):12–
16.
Astley, S. M. (2004). Computer-based detection and
prompting of mammographic abnormalities. Br. J. Ra-
diol., 45:S194–S200.
Chen, Y., Park, S. K., Ma, Y., and Ala, R. (2011). A new au-
tomatic parameter setting method of a simplified pcnn
for image segmentation. IEEE Trans. Neural Netw.,
22(6):880–892.
Chen, Z., Strange, H., Oliver, A., Denton, E. R. E., Boggis,
C., and Zwiggelaar, R. (2015). Topological modeling
and classification of mammographic microcalcifica-
tion clusters. IEEE Trans. Biomed. Eng., 62(4):1203–
1214.
Cui, Y., Tan, Y., Zhao, B., Liberman, L., Parbhu,
R., Kaplan, J., Theodoulou, M., Hudis, C., and
Schwartz, L. H. (2009). Malignant lesion segmen-
tation in contrast-enhanced breast mr images based
on the marker-controlled watershed. Med. Phys.,
36(10):4359–4369.
Du, S., Wu, G., Ma, L., and Ma, Y. (2014). Maximum quan-
tum entropy based optimal threshold selecting crite-
rion for thresholding image segmentation. J. Comput.
Inf. Syst., 10(8):3359–3366.
Eckhorn, R., Reitboeck, H. J., Arndt, M., and Dicke, P.
(1989). Feature linking via stimulus-evoked oscil-
lations: experimental results from cat visual cortex
and functional implications from a network model. In
Proc. of the Int. Joint Conf. on Neural Networks, pages
723–730.
Eckhorn, R., Reitboeck, H. J., Arndt, M., and Dicke, P.
(1990). Feature linking via synchronization among
distributed assemblies: Simulations of results from cat
visual cortex. Neural Comput., 2(3):293–307.
Eltonsy, N. H., Tourassi, G. D., and Elmaghraby, A. S.
(2007). A concentric morphology model for the detec-
tion of masses in mammography. IEEE Trans. Med.
Imaging, 26(6):880–889.
Estellers, V., Zosso, D., Lai, R., Osher, S., Thiran, J.-P.,
and Bresson, X. (2012). Efficient algorithm for level
set method preserving distance function. IEEE Trans.
Image Process, 21(12):4722–4734.
Guo, M., Dong, M., Wang, Z., Ma, Y., Guo, Y. (2015).
A new method for mammographic mass segmentation
based on parametric active contour model. In Proc. of
the Int. Conf. on Wavelet Analysis and Pattern Recog-
nition, pages 27–33.
Heath, M., Bowyer, K., Kopans, D., Kegelmeyer, W. P.,
Moore, R., Chang, K., and MunishKumaran, S.
(1998). Current status of the digital database for
screening mammography. In Proc. of the Int. Work-
shop on Digital Mammography, pages 457–460.
Heath, M., Bowyer, K., Kopans, D., Moore, R., and
Kegelmeyer, W. P. (2001). The digital database for
screening mammography. In Proc. of the Int. Work-
shop on Digital Mammography, pages 212–218.
Kuntimad, G. and Ranganath, H. S. (1999). Perfect image
segmentation using pulse coupled neural networks.
IEEE Trans. Neural Netw., 10(3):591–598.
Li, C., Xu, C., Gui, C., and Fox, M. D. (2010). Distance
regularized level set evolution and its application to
image segmentation. IEEE Trans. Image Process.,
19(12):3243–3254.
Li, M., Cai, W., and Tan, Z. (2006). A region-based multi-
sensor image fusion scheme using pulse-coupled neu-
ral network. Pattern Recogn. Lett., 27(16):1948–1956.
Liang, X., Ramamohanarao, K., Frazer, H., and Yang, Q.
(2012). Lesion segmentation in dynamic contrast en-
hanced mri of breast. In Proc. of the Int. Conf. on Dig-
ital Image Computing Techniques and Applications,
pages 1–8.
Moraru, L., Moldovanu, S., and Biswas, A. (2014). Opti-
mization of breast lesion segmentation in texture fea-
ture space approach. Med. Eng. Phys., 36(1):129–135.
Osher, S. and Sethian, J. A. (1988). Fronts propagating
with curvature-dependent speed: Algorithms based
on hamilton-jacobi formulations. J. Comput. Phys.,
79(1):12–49.
Rouhi, R., Jafari, M., Kasaei, S., and Keshavarzian, P.
(2015). Benign and malignant breast tumors classifi-
cation based on region growing and cnn segmentation.
Expert Syst. Appl., 42(3):990–1002.
Suckling, J., Parker, J., Dance, D. R., Astely, S., Hutt,
I., Boggis, C. R. M., Ricketts, I., Stamatakis, E.,
Cerneaz, N., Kok, S.-L., Taylor, P., Betal, D., and Sav-
age, J. (1994). The mammographic image analysis so-
ciety digital mammogram database. In Proc. of the Int.
Congress Series on Exerpta Medica, pages 375–378.
Wang, Z., Ma, Y., Cheng, F., , and Yang, L. (2010). Review
of pulse-coupled neural networks. Image and Vision
Comput., 28(1):5–13.
Wang, Z., Yu, G., Kang, Y., Zhao, Y., and Qu, Q.
(2014). Breast tumor detection in digital mammogra-
phy based on extreme learning machine. Neurocom-
puting, 128:175–184.
Xian, M., Zhang, Y., and Cheng, H. D. (2015). Fully auto-
matic segmentation of breast ultrasound images based
on breast characteristics in space and frequency do-
mains. Pattern Recognit., 48(2):485–497.
Xie, W., Ma, Y., and Li, Y. (2015). Breast mass segmen-
tation in digital mammography based on pulse cou-
pled neural network and level set method. In Proc.
of the Satellite Data Compression, Communications,
and Processing XI, page 95010J.
Xie, W., Li, Y., and Ma, Y. (2016). Breast mass classifica-
tion in digital mammography based on extreme learn-
ing machine. Neurocomputing, 173:930–941.
Zhang, L. and Ji, Q. (2011). A bayesian network model for
automatic and interactive image segmentation. IEEE
Trans. Image Process., 20(9):2582–2593.
Zhou, L., Sun, Y., and Zheng, J. (2008). Automated color
image edge detection using improved pcnn model.
WSEAS Trans. Computers, 7(4):184–189.