5 CONCLUSIONS
A new patient specific seizure prediction algorithm
based on 1D-LBP in scalp EEG has been proposed
in this study. The idea is to classify between preictal
and interictal EEG using appropriate features. For
this purpose, histogram features are extracted from
the 1D-LBP applied signal. These features are
submitted to two different classifiers: LDA and
SVM. In order to reduce the false alarms, a simple
post processing is also incorporated. The
classification using SVM shows improvement over
LDA in terms of sensitivity, prediction time and
FPR. When this algorithm is applied to scalp EEG
recordings from 13 patients with a total number of
47 seizures, it could achieve a sensitivity of 96.15%,
an APT of 51.25 minutes with an FPR of 0.463.
Comparison with the previous works using the same
database shows improvement in terms of APT and
sensitivity.
REFERENCES
Adelson, P. D., Nemoto, E., Sheuer, M., Painter, M.,
Morqan, J., Yonas, H., 1999, ‘Noninvasive continuous
monitoring of cerebral oxygenation preictally using
near-infrared spectroscopy: A preliminary report’,
Epilepsia,vol. 40, pp. 1484-1489.
Bandarabadi, M., Teixeira, C. A., Direito, B., Dourado,
A., 2012, ‘Epileptic Seizure Prediction based on a
bivariate spectral power methodology’, Conf. Proc.
IEEE Eng. Med. Biol. Soc. 2012, 5943-5946.
Bedeeuzzaman, M., Fathima, T., Khan, Y. U., Farooq, O.,
2012. Mean absolute deviation and wavelet entropy
for seizure prediction. J. Med. Imag. Health. Inform. 2,
238-243.
Bedeeuzzaman, M., Fathima, T., Khan, Y. U., Farooq, O.,
2014. Seizure prediction using statistical dispersion
measures of intracranial EEG. Biomed. Signal.
Process. Control. 10, 338-341.
Chatlani, N., Soraghan, J. J., 2010. Local binary patterns
for 1-D signal processing. 18
th
Europian Signal
Process. Conf. Denmark, 95-99.
CHB-MIT Scalp EEG Database. Available from: < http://
physionet.org/physiobank/database/chbmit>. (10
February 2015).
Chiang, C-Y., Chang, N. F., Chen, T. C., Chen, H. H.,
Chen, L. G., 2011. Seizure Prediction Based on
Classification of EEG Synchronisation Patterns with
On-line Retraining and Post-Processing Scheme. Conf.
Proc. IEEE Eng. Med. Biol. Soc. 2011, 7564-7569.
Chisci, L., Mavino, A., Perferi, G., Sciandrone, M., Anile,
C., Colicchio, G., Fuqqetta, F., 2010. Real time
epileptic seizure prediction using AR models and
Support Vector Machine. IEEE Trans. on Biomedical
Eng. 57, 1124-1132.
Cosandier-Rimélé, D., Badier, J.M., Chauvel, P.,
Wendling, F., 2007. Modeling and interpretation of
scalp-EEG and depth-EEG signals during interictal
activity. Proc. 29th Annual Int. Conf. IEEE EMBS.
4277-4280.
Direito, B., Ventura, F., Teixeira, C., Dourado, A., 2011.
Optimized Feature Subsets for Epileptic Seizure
Prediction Studies. Conf. Proc. IEEE Eng. Med. Biol.
Soc. 2011 1636-1639.
Federico, P., Abbott, D. F., Briellmann, R. S., Harvey, A.
S., Jackson, G. D., 2005. Functional MRI of the pre-
ictal state. Brain.128, 1811-1817.
Fisher, R. S., Boas, W. E. , Blume, W., Elger, C., Genton,
P., Lee, P., Engel, J. Jr., 2005. Epileptic Seizures and
Epilepsy: Definitions Proposed by the International
League Against Epilepsy (ILAE) and the International
Bureau for Epilepsy (IBE). Epilepsia. 46, 470-472.
Goldberger, A. L., Amaral, L. A. N., Glass, L.,
Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus,
J. F., Moody, G. B., Peng, C.-K., Stanley, H. E. 2000.
Physiobank, physiotoolkit, and physionet:
Components of a new research resource for complex
physiologic signals. Circ. 101, e215-e220.
Guo, Z., Zhang, L., Zhang, D., 2010. A completed
modeling of local binary pattern operator for texture
classification. IEEE Trans. image process. 19, 1657-
1663.
Hively, L., Protopopescu, V., 2003. Channel-consistent
forewarning of epileptic events from scalp EEG. IEEE
Trans. Biomed. Eng. 50, 584-593.
James, C. J., Gupta, D., 2009. Seizure prediction for
epilepsy using a multi-stage phase synchrony based
system. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009,
25-28.
Kaya, Y., Uyar, M., Tekin, R., Yildirim, S., 2014. 1D-
local binary pattern based feature extraction for
classification of epileptic EEG signals. Appl.
Mathematics. Computation. 243, 209-219.
Kerem, D. H., Geva, A. B., 2005. Forecasting epilepsy
from the heart rate signal, Med. Biological Eng.
Computing. 43, 230-239.
Li, S., Zhou, W., Yuan, Q., Liu, Y., 2013. Seizure
Prediction Using Spike Rate of Intracranial EEG.
IEEE Trans. Neural Systems. Rehabilitation. Eng. 21,
880-886.
Mirowski P. W., Madhavan, D., LeCun, Y., Kuzniecky,
R., 2009. Classification of patterns of EEG
synchronization for seizure prediction. Clinical.
Neurophysiol. 120, 1927-1940.
Ojala, T., Pietikäinen, M., Harwood, D., 1996. A
comparative study of texture measures with
classification based on feature distributions. Pattern.
Recognit. 29, 51-59.
Ouyang, G., Li, X., Li, Y., Guan, X., 2007. Application of
wavelet-based similarity analysis to epileptic seizures
prediction. Computers. Biol. Med. 37, 430 – 437.
Quen, M. L. V, Martinerie, J., Navaro, V., Boon, P.,
D’Havé, M., Adam, C., Renault, B., Varela, F.
Baulac, M., 2001. Anticipation of epileptic seizures
from standard EEG recordings. Lancet, 357, 183-188.