REFERENCES
Areces, C., Hoffmann, G., and Denis, A. (2010). Modal
logics with counting. In Proceedings of the 17th Work-
shop on Logic, Language, Information and Computa-
tion (WoLLIC), pages 98–109.
Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev,
Z., and Velkov, R. (2011). OWLIM: A family of scal-
able semantic repositories. Semantic Web, 2(1):33–42.
Blackburn, P., de Rijke, M., and Venema, Y. (2001). Modal
Logic. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, Cambridge.
Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D.,
Seaborne, A., and Wilkinson, K. (2004). Jena: Im-
plementing the Semantic Web recommendations. In
Proceedings of the 13th international World Wide Web
conference (WWW), pages 74–83.
Devlin, K. (2006). Situation theory and situation semantics.
In Gabbay, D. M. and Woods, J., editors, Handbook of
the History of Logic. Volume 7, pages 601–664. Else-
vier.
Dubois, D. and Prade, H. (1994). Can we enforce full com-
positionality in uncertainty calculi. In Proceedings
of the 12th National Conference on Artificial Intelli-
gence, pages 149–154.
Fine, K. (1972). In so many possible worlds. Notre Dame
Journal of Formal Logic, 13(4):516–520.
Golbreich, C. and Wallace, E. K. (2012). OWL 2 web ontol-
ogy language new features and rationale (second edi-
tion). Technical report, W3C.
Halpern, J. Y. (1990). An analysis of first-order logics of
probability. Artificial Intelligence, 46:311–350.
Halpern, J. Y. (2003). Reasoning About Uncertainty. MIT
Press, Cambridge, MA.
Hayes, P. (2004). RDF semantics. Technical report, W3C.
Heinsohn, J. (1993). ALCP – Ein hybrider Ansatz zur
Modellierung von Unsicherheit in terminologischen
Logiken. PhD thesis, Universit
¨
at des Saarlandes. In
German.
Jaeger, M. (1994). Probabilistic reasoning in terminological
logics. In Proceedings of the 4th International Confer-
ence on Principles of Knowledge Representation and
Reasoning (KR), pages 305–316.
Jøsang, A. (1997). Artificial reasoning with subjective
logic. In Proceedings of the 2nd Australian Workshop
on Commonsense Reasoning.
Jøsang, A. (2001). A logic for uncertain probabilities.
International Journal of Uncertainty, Fuzzyness and
Knowledge-Based Systems, 9(3):279–311.
Koller, D. and Friedmann, N. (2009). Probabilistic Graph-
ical Models. MIT Press.
Krengel, U. (2003). Einf
¨
uhrung in die Wahrscheinlichkeits-
theorie und Statistik. Vieweg, 7th edition. In German.
Krieger, H.-U. (2012). A temporal extension of the
Hayes/ter Horst entailment rules and an alternative to
W3C’s n-ary relations. In Proceedings of the 7th In-
ternational Conference on Formal Ontology in Infor-
mation Systems (FOIS), pages 323–336.
Krieger, H.-U. (2013). An efficient implementation of
equivalence relations in OWL via rule and query
rewriting. In Proceedings of the 7th IEEE Interna-
tional Conference on Semantic Computing (ICSC),
pages 260–263.
Lucas, P. J., van der Gaag, L. C., and Abu-Hanna, A. (2004).
Bayesian networks in biomedicine and health-care.
Artificial Intelligence in Medicine, 30:201–214.
Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue,
A., and Lutz, C. (2012). OWL 2 web ontology lan-
guage profiles. Technical report, W3C. W3C Recom-
mendation 11 December 2012.
Pearl, J. (1988). Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kauf-
mann, San Francisco, CA, MA.
Richardson, M. and Domingos, P. (2006). Markov logic
networks. Machine Learning, 62(1–2):107–136.
Schulz, S., Mart
´
ınez-Costa, C., Karlsson, D., Cornet, R.,
Brochhausen, M., and Rector, A. (2014). An onto-
logical analysis of reference in health record state-
ments. In Proceedings of the 8th International Con-
ference on Formal Ontology in Information Systems
(FOIS 2014).
Stoilos, G., Stamou, G. B., Tzouvaras, V., Pan, J. Z., and
Horrocks, I. (2005). Fuzzy OWL: uncertainty and
the semantic web. In Proceedings of the OWLED ’05
Workshop on OWL: Experiences and Directions.
Straccia, U. (2001). Reasoning within fuzzy description
logics. Journal of Artificial Intelligence Research,
14:147–176.
ter Horst, H. J. (2005). Completeness, decidability and
complexity of entailment for RDF Schema and a
semantic extension involving the OWL vocabulary.
Journal of Web Semantics, 3:79–115.
Tresp, C. B. and Molitor, R. (1998). A description logic
for vague knowledge. In Proceedings of the 13th Eu-
ropean Conference on Artificial Intelligence (ECAI),
pages 361–365.
Wikipedia (2015). Modal logic — Wikipedia, The Free En-
cyclopedia. [Online; accessed 19-June-2015].
Wilson, N. (2000). Algorithms for Dempster-Shafer theory.
In Algorithms for Uncertainty and Defeasible Reason-
ing, Handbook of Defeasible Reasoning and Uncer-
tainty Management Systems, pages 421–475. Kluwer.
ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence
30