Computer Science and its Applications (Vol. 279, pp.
799–804). Berlin, Heidelberg: Springer Berlin
Heidelberg. http://doi.org/10.1007/978-3-642-41674-
3_114.
Little, E. E., and Finger, S. E. (1990). Swimming behaviour
as an indicator of sublethal toxicity in fish.
Environmental Toxicology and Chemistry, 9(1), 13–19.
http://doi.org/10.1002/etc.5620090103.
Mancera, J. M., Vargas-Chacoff, L., García-López, A.,
Kleszczyńska, A., Kalamarz, H., Martínez-Rodríguez,
G., and Kulczykowska, E. (2008). High density and
food deprivation affect arginine vasotocin, isotocin and
melatonin in gilthead sea bream (Sparus auratus).
Comparative Biochemistry and Physiology Part a:
Molecular and Integrative Physiology, 149(1), 92–97.
http://doi.org/10.1016/j.cbpa.2007.10.016.
Masud, S., Singh, I. J., and Ram, R. N. (2005). Behavioural
and hematological responses of Cyprinus carpio
exposed to mercurial chloride. Journal of
Environmental Biology / Academy of Environmental
Biology, India, 26(2 Suppl), 393–397.
Matsumoto, J., Urakawa, S., Takamura, Y., Malcher-Lopes,
R., Hori, E., Tomaz, C., et al. (2013). A 3D-Video-
Based Computerized Analysis of Social and Sexual
Interactions in Rats. PLoS ONE, 8(10), e78460.
http://doi.org/10.1371/journal.pone.0078460.
Mirat, O., Sternberg, J. R., Severi, K. E., & Wyart, C.
(2013). ZebraZoom: an automated program for high-
throughput behavioral analysis and categorization.
Frontiers in Neural Circuits, 7, 1–12.
http://doi.org/10.3389/fncir.2013.00107.
Moreira, P. S. A., and Volpato, G. L. (2004). Conditioning
of stress in Nile tilapia. Journal of Fish Biology, 64(4),
961–969. http://doi.org/10.1111/j.1095-8649.2004.
00362.x.
Oppedal, F., Dempster, T., and Stien, L. H. (2011).
Environmental drivers of Atlantic salmon behaviour in
sea-cages: A review. Aquaculture, 311(1-4), 1–18.
http://doi.org/10.1016/j.aquaculture.2010.11.020.
Papadakis, V. M., Papadakis, I. E., Lamprianidou, F.,
Glaropoulos, A., and Kentouri, M. (2012). A computer-
vision system and methodology for the analysis of fish
behaviour. Aquacultural Engineering, 46, 53–59.
http://doi.org/10.1016/j.aquaeng.2011.11.002.
Parsonage, K. D., and Petrell, R. J. (2003). Accuracy of a
machine-vision pellet detection system. Aquacultural
Engineering, 29(3-4), 109–123. http://doi.org/10.1016/
S0144-8609(03)00049-9.
Pawar, S., Dell, A. I., and Savage, V. M. (2012).
Dimensionality of consumer search space drives
trophic interaction strengths. Nature, 486(7404), 485–
489. http://doi.org/10.1038/nature11131.
Pérez-Escudero, A., Vicente-Page, J., Hinz, R. C., Arganda,
S., and de Polavieja, G. G. (2014). idTracker: tracking
individuals in a group by automatic identification of
unmarked animals. Nature Methods, 11(7), 743–748.
http://doi.org/10.1038/nmeth.2994.
Pinkiewicz, T. H., Purser, G. J., and Williams, R. N. (2011).
A computer vision system to analyse the swimming
behaviour of farmed fish in commercial aquaculture
facilities: A case study using cage-held Atlantic
salmon. Aquacultural Engineering, 45(1), 20–27.
http://doi.org/10.1016/j.aquaeng.2011.05.002.
Salierno, J. D., Gipson, G. T., and Kane, A. S. (2007).
Quantitative movement analysis of social behaviour in
mummichog, Fundulus heteroclitus. Journal of
Ethology, 26(1), 35–42. http://doi.org/10.1007/s10164-
006-0027-7.
Schramm, M., (2010) Kinect: the company behind the tech
explain how it works. http://www.engadget.com/2010/
06/19/kinect-how-it-works-from-the-company-behind-
the-tech/. Retrieved 11 April 2015.
Smisek, J., Jancosek, M., and Pajdla, T. (2011). 3D with
Kinect (pp. 1154–1160). Presented at the IEEE
International Conference on Computer Vision
Workshops (ICCV Workshops), IEEE.
http://doi.org/10.1109/ICCVW.2011.6130380.
Spitzen, J., Spoor, C. W., Grieco, F., Braak, ter, C.,
Beeuwkes, J., van Brugge, S. P., et al. (2013). A 3D
Analysis of Flight Behaviour of Anopheles gambiae
sensu stricto Malaria Mosquitoes in Response to
Human Odor and Heat. PLoS ONE, 8(5), e62995.
http://doi.org/10.1371/journal.pone.0062995.
Stewart, A. M., Gaikwad, S., Kyzar, E., and Kalueff, A. V.
(2012). Understanding spatio-temporal strategies of
adult zebrafish exploration in the open field test. Brain
Research, 1451, 44–52. http://doi.org/10.1016/
j.brainres.2012.02.064.
Suzuki, K., Takagi, T., and Hiraishi, T. (2003). Video
analysis of fish schooling behaviour in finite space
using a mathematical model. Fisheries Research, 60(1),
3–10. http://doi.org/10.1016/S0165-7836(02)00081-4.
Tang, L., Tian, L., and Steward, B. L. (2003). Classification
of broadleaf and grass weeds using gabor wavelets and
an artificial neural network. Transactions of the ASAE,
46(4), 1247–1254. http://doi.org/10.13031/
2013.13944.
Torisawa, S., Kadota, M., Komeyama, K., Suzuki, K., and
Takagi, T. (2011). A digital stereo-video camera system
for three-dimensional monitoring of free-swimming
Pacific bluefin tuna, Thunnus orientalis, cultured in a
net cage. Aquatic Living Resources, 24(2), 107–112.
http://doi.org/10.1051/alr/2011133.
Veeraraghavan, A., Srinivasan, M., Chellappa, R., Baird,
E., and Lamont, R. (2006). Motion Based
Correspondence for 3D Tracking of Multiple Dim
Objects (Vol. 2, pp. II–669–II–672). Presented at the
2006 IEEE International Conference on Acoustics
Speed and Signal Processing, IEEE.
http://doi.org/10.1109/ICASSP.2006.1660431.
Viscido, S. V., Parrish, J. K., and Grünbaum, D. (2004).
Individual behaviour and emergent properties of fish
schools: a comparison of observation and theory.
Marine Ecology Progress Series, 273, 239–249.
http://doi.org/10.3354/meps273239.
Wu, H. S., Zhao, Q., Zou, D., and Chen, Y. Q. (2011).
Automated 3D trajectory measuring of large numbers
of moving particles. Optics Express, 19(8), 7646–7663.
http://doi.org/10.1364/OE.19.007646.