femtosecond duration. As the Rydberg wave packet
is continually located in the vicinity of the atomic
nucleus and doesn’t spread in time, the proposed
effect of the up conversion should be much more
efficient than the emission of the XUV radiation
during the re-scattering of an electron on the parent
ion (Corkum, 1993).
Figure 9: Schematic illustration of the ponderomotive shift
of Rydberg states and the continuum boundary.
5 CONCLUSIONS
In this paper we propose to use the population
inversion between set of Rydberg states and low-
lying excited or even ground states appearing as a
result of the interference stabilization phenomenon
in strong laser fields for the amplification and
generation of visible, VUV and XUV frequency
pulses. Estimations for the possible gain factor are
performed at it is demonstrated that for typical
conditions of IS gain factor for the visible and VUV
radiation can reach ~ 0.1 - 1 cm
-1
which is very large
value implementing the possibility to obtain
effective emission in plasma channels produced by
high intensity laser pulse. We explore the process of
generation and amplification of different pulses
using the approach of rate equations. The problem of
generation of XUV pulses during the interaction
with high intensity pumping laser pulses is also
observed. We would also like to note that a given
lasing effect based on the IS stabilization
phenomenon can probably be observed in filaments
at rather far away distances from the source of
pumping laser radiation.
ACKNOWLEDGEMENTS
This work was supported by the Russian Foundation
for Basic Research (projects no. 15-02-00373, 16-
32-00123). Numerical modeling was performed on
the Lomonosov supercomputer.
REFERENCES
Agostini, P. and Di Mauro, L. F. 2004. Rep. Prog. Phys.,
67, 813.
Azarm, A., Sharifi, S. M., Sridharan, A. et al, 2013. J.
Phys. Conf. Ser., 414, 012015.
Becker, W., Long, S., and McEver, J. K. 1994. Phys. Rev.
A, 50, 1540.
Bogatskaya, A. V. and Popov, A. M., 2013. JETP Lett.,
97, 388.
Bogatskaya, A. V., Volkova, E. A. and Popov, A. M.,
2013. Quantum Electron., 43, 1110.
Bogatskaya, A. V., Volkova, E. A. and Popov, A. M.,
2014. J. Phys. D, 47, 185202.
Bogatskaya, A. V. and Popov, A. M., 2015. Laser Phys.
Lett., 12, 045303.
Bekefi. G., Hirshfield, Y. L. and Brown, S. C., 1961. Phys.
Fluids, 4, 173.
Bunkin, F. V., Kazakov, A. E. and Fedorov, M. V., 1972.
Uspekhi Fiz. Nauk 107 559 [Sov. Phys. USPEKHI.
15. 416].
Chin, S. L., Hu, H.-L., 2015. Chin. Phys. B, 24, 013301.
Corkum, P. B., 1993. Phys. Rev. Lett., 71, 1994.
Dubrovskii, Yu. V., Ivanov, M. Yu., and Fedorov, M. V.
1991, Sov. Phys. JETP, 72, 228.
Eichmann, U., Saenz, A., Eilzer, S., Nubbenmeyer, T. and
Sandner, W., 2013. Phys. Rev. Lett., 110, 203002.
Eichmann, U., Nubbenmeyer, T., Rottke, H. and Sandner,
W., 2009. Nature, 461, 1261.
Fechner, L., Camus, N., Krupp, A., Ullrich, J., Pfeifer, T.
and Moshammer, R. 2015. Phys. Rev. A, 92,
051403(R).
Fedorov, M. V. and Movsesian, A. M. 1988. J. Phys. B,
21, L155.
Fedorov, M. V., Tehranchi, M.-M., and Fedorov, S. M.,
1996. J. Phys. B, 29, 2907.
Fedorov, M. V., Poluektov, N. P., Popov, A. M. et al,
2012. IEEE J. of Selected Topics in Quantum
Electron., 18, 42.
Freeman, R. R., Bucksbaum, P. H., Milchberg, H. et al,
1987. Phys. Rev. Lett., 59, 1092.
Gildenburg, V. B. and Vvedenskii, N. V., 2007. Phys.
Rev. Lett., 98, 245002.
Kartashov, D., Ališauskas, S., Pugžlys, A., Shneider, M.
N. and Baltuška, A. 2015. J. Phys. B: At. Mol. Opt.
Phys., 48, 094016.
Krausz, F. and Ivanov, M., 2009. Rev. Mod. Phys., 81,
163.
Kreß, M., et al, 2006. Nature Phys., 2, 327.
Lewenstein, M., Balcou, Ph., Ivanov, M. Yu., L'Huillier,
A., and Corkum, P. B. 1994. Phys. Rev. A, 49. 2117.
L’Huillier, A., Lewenstein, M., Saliere,s P., Balcou, P.,
Ivanov, M. Yu., Larsson, .J, and Wahlstrom, C. G.
1993. Phys. Rev. A, 48. R3433.