4 CONCLUSIONS
In this paper, we have investigated the interaction
dynamics of two in-phase quiescent BG solitons in
a semilinear dual core system, where one core has
cubic-quintic nonlinearity with BG and the other is
linear. By means of systematic numerical simula-
tions, the soliton interactions have been studied for
different soliton parameters. It is found that, the inter-
actions between stable Type 1 solitons may produce
diverse results such as destruction of one or both the
solitons, symmetric or asymmetric separation, merger
into one quiescent or moving soliton and even the
transformation of 2 → 3 solitons. It is also observed
that the interaction outcomes strongly dependent on
the strength of quintic nonlinearity (q), coupling co-
efficient (κ) between the cores and the the group ve-
locity term (c) in the linear core. The interactions
may result in the formation of three solitons (a quies-
cent soliton and two moving ones) in both the upper
and lower bandgaps.
REFERENCES
Aceves, A. B. and Wabnitz, S. (1989). Self induced trans-
parency solitons in nonlinear refractive periodic me-
dia. Phys. Lett. A, 141:37–42.
Atai, J. (2004). Interaction of Bragg grating solitons in a
cubic-quintic medium. J. Opt. B Quantum Semiclass.,
6:S177–S181.
Atai, J. and Chen, Y. (1992). Nonlinear couplers composed
of different nonlinear cores. J. Appl. Phys., 72:24–27.
Atai, J. and Chen, Y. (1993). Nonlinear mismatches be-
tween two cores of saturable nonlinear couplers. IEEE
J. Quant. Elec., 29:242–249.
Atai, J. and Malomed, B. A. (2000). Bragg-grating soli-
tons in a semilinear dual-core system. Phys. Rev. E,
62:8713–8718.
Atai, J. and Malomed, B. A. (2001). Families of Bragg-
grating solitons in a cubic-quintic medium. Phys. Lett.
A, 284:247–252.
Bertolotti, M., Monaco, M., and Sibilia, C. (1995). Role of
the asymmetry in a third-order nonlinear directional
coupler. Opt. Comm., 116:405–410.
Boudebs, G., Cherukulappurath, S., Leblond, H., Troles, J.,
Smerktala, F., and Sanchez, F. (2003). Experimental
and theoretical study of higher-order nonlinearities in
chalcogenide glasses. Opt. Commun., 219:427–433.
Christadoulides, D. N. and Joseph, R. I. (1989). Slow Bragg
solitons in nonlinear periodic structures. Phys. Rev.
Lett., 62:1746–1749.
Christiansen, P., Sorensen, M., and Scott, A., editors (2000).
Nonlinear Science and the Dawn of the 21st Century.
Springer, Verlag Berlin Heidelberg New York, 1st edi-
tion.
Conti, C., Trillo, S., and Assanto, G. (1997). Doubly res-
onant Bragg simultons via second-harmonic genera-
tion. Phys. Rev. Lett., 78:2341–2344.
Dasanayaka, S. and Atai, J. (2013a). Moving Bragg grat-
ing solitons in a cubic-quintic nonlinear medium with
dispersive reflectivity. Phys. Rev. E, 88:022921.
Dasanayaka, S. and Atai, J. (2013b). Stability and collisions
of moving Bragg grating solitons in a cubic-quintic
nonlinear medium. J. Opt. Soc. Am. B, 30:396–404.
Desterke, C. M. and Sipe, J. E. (1994). Gap solitons.
Progress in Optics, 33:203–260.
Eggleton, B. J., Desterke, C. M., and Slusher, R. E. (1997).
Nonlinear pulse propagation in Bragg gratings. J. Opt.
Soc. Am. B, 14:2980–2993.
Islam, M. J. and Atai, J. (2015). Bragg grating solitons in
semilinear dual-core system with cubic-quintic non-
linearity. In International Conference on Photonics,
Optics and Laser Technology, Berlin, Germany. IN-
STICC.
Kashyap, R. (1999). Fiber Bragg Gratings. Academic
Press, San Diego.
Lawrence, B. L., Cha, M., Torruellas, W. E., Stegeman,
G. I., Etemad, S., Baker, G., and Kajzar, F. (1994).
Measurement of the complex nonlinear refractive-
index of single-crystal p-toluene sulfonate at 1064-
nm. Appl. Phys. Lett., 64:2773–2775.
Loh, W., Laming, R., Robinson, N., Cavaciuti, A., C. Va-
ninetti, J. A., Zervis, M., and Cole, M. (1996). Dis-
persion compensation over distances in excess of 500
km for 10 gb/s systems using chirped fiber gratings.
IEEE Photon. Technol. Lett., 8:944–946.
Mak, W. C. K., Malomed, B. A., and Chu, P. L. (1998).
Solitary waves in coupled nonlinear waveguides with
Bragg gratings. J. Opt. Soc. Am. B, 15:1685–1692.
Mak, W. C. K., Malomed, B. A., and Chu, P. L. (2003).
Formation of a standing-light pulse through collision
of gap solitons. Phys. Rev. E, 68:02669.
Mok, J. T., Desterke, C. M., Litler, I. C. M., and Eggleton,
B. J. (2006). Dispersionless slow light using gap soli-
tons. Nat. Phys., 2:775–780.
Neill, D. R. and Atai, J. (2006). Collision dynamics of gap
solitons in kerr media. Phys. Lett. A, 353:416–421.
Neill, D. R., Atai, J., and Malomed, B. A. (2007). Gap soli-
tons in a hollow optical fiber in the normal dispersion
regime. Phys. Lett. A, 367:73–82.
Nistazakis, H. E., Frantzeskakis, D. J., Atai, J., Malomed,
B. A., Efremidis, N., and Hizanidis, K. (2002). Mul-
tichannel pulse dynamics in a stabilized ginzburg-
landau system. Phys. Rev. E, 65:036605.
Radic, S., George, N., and Agrawal, G. P. (1995). The-
ory of low-threshold optical switching in nonlinear
phase-shifted periodic structures. J. Opt. Soc. Am. B,
12:671–680.
Taverner, D., Broderick, N. G. R., Richardson, D. J., Lam-
ing, R. I., and Ibsen, M. (1998). Nonlinear self-
switching and multiple gap-soliton formation in a
fiber Bragg grating. Opt. Lett., 23:328–330.
Zhan, C., Zhang, D., Zhu, D., Wang, D., Li, Y., Li, D., Lu,
Z., Zhao, L., and Nie, Y. (2002). Third- and fifth-order
optical nonlinearities in a new stilbazolium derivative.
J. Opt. Soc. Am. B, 19:369–375.