Figure 5: Stability diagram for λ = 0.2, m= 0.2 in the (c, ω)
plane.
c > 1, the stable region shrinks as c increases. On the
other hand, in the range 0.2 ≤ c < 1, increasing c re-
sults in the expansion of the stable region in the lower
bandgap.
4 CONCLUSIONS
Bragg grating solitons are investigated numerically
in a systematic way in a dual core coupled nonlin-
ear medium where one core is nonlinear that contains
Kerr nonlinearity and another core is linear and has
a Bragg grating with dispersive reflectivity. The lin-
ear spectrum of the system has three spectral gaps:
a genuine central gap and an upper and a lower gap
each overlapping with one branch of the continuous
spectrum for all values of c. Stationary soliton so-
lutions are found only in the lower and upper band
gaps. Above a certain value of dispersive reflectivity
parameter m, solitons develop sidelobes. Sidelobes
are dominant in the the soliton profile for lower val-
ues of c but for higher values of c no sidelobes are
generated.
As for the stability of solitons, unlike the model
without dispersive reflectivity, stable solitons are
found in both upper and lower gaps. We have also
identified nontrivial stability borders in the plane of
(c, ω).
REFERENCES
Aceves, A. B. and Wabnitz, S. (1989). Self-induced trans-
parency solitons in nonlinear refractive periodic me-
dia. Phys. Lett. A, 141:37–42.
Atai, J. and Baratali, B. H. (2012). Gap solitons in dual-core
bragg gratings with dispersive reflectivity. J. Opt.,
14:065202.
Atai, J. and Chen, Y. (1992). Nonlinear couplers composed
of different nonlinear cores. J. Appl. Phys., 72:24–27.
Atai, J. and Chen, Y. (1993). Nonlinear mismatches be-
tween two cores of saturable nonlinear couplers. IEEE
J. Quant. Elec., 29:242–249.
Atai, J. and Malomed, B. A. (2000). Bragg-grating soli-
tons in a semilinear dual-core system. Phys. Rev. E,
62:8713–8718.
Atai, J. and Malomed, B. A. (2001). Solitary waves in sys-
tems with separated bragg grating and nonlinearity.
Phys. Rev. E, 64:066617.
Atai, J. and Malomed, B. A. (2005). Gap solitons in bragg
gratings with dispersive reflectivity. Phys. Lett. A,
342:404–412.
Barashenkov, I. V., Pelinovsky, D. E., and Zemlyanaya,
E. V. (1998). Vibrations and oscillatory instabilities
of gap solitons. Phys. Rev. Lett., 80:5117–5120.
Bertolotti, M., Monaco, M., and Sibilia, C. (1995). Role of
the asymmetry in a third-order nonlinear directional
coupler. Opt. Comm., 116:405–410.
Christodoulides, D. N. and Joseph, R. I. (1989). Slow bragg
solitons in nonlinear periodic structures. Phys. Rev.
Lett., 62:1746–1749.
De Rossi, A., Conti, C., and Trillo, S. (1998). Stability,
multistability, and wobbling of optical gap solitons.
Phys. Rev. Lett., 81:85–88.
de Sterke, C. M., Eggleton, B. J., and Krug, P. A. (1997).
High-intensity pulse propagation in uniform gratings
and grating superstructures. IEEE J. Lightwave Tech-
nol., 15:1494–1502.
de Sterke, C. M. and Sipe, J. E. (1994). Gap solitons. Prog.
Optics, 33:203–260.
Dong, R., R¨uter, C. E., Kip, D., Cuevas, J., Kevrekidis,
P. G., Song, D., and Xu, J. (2011). Dark-bright gap
solitons in coupled-mode one-dimensional saturable
waveguide arrays. Phys. Rev. A, 83:063816.
Eggleton, B. J., de Sterke, C. M., and Slusher, R. E. (1997).
Nonlinear pulse propagation in Bragg gratings. J. Opt.
Soc. Am. B, 14:2980–2993.
Eggleton, B. J., de Sterke, C. M., and Slusher, R. E. (1999).
Bragg solitons in the nonlinear schr¨odinger limit: ex-
periment and theory. J. Opt. Soc. Am. B, 16:587–599.
Eggleton, B. J., Slusher, R. E., Krug, P. A., and Sipe, J. E.
(1996). Bragg grating solitons. Phys. Rev. Lett.,
76:1627–1630.
Krauss, T. F. (2008). Why do we need slow light? Nature
Photon., 2:448–450.
Mak, W. C. K., Malomed, B. A., and Chu, P. L. (1998).
Solitary waves in coupled nonlinear waveguides with
Bragg gratings. J. Opt. Soc. Am. B, 15:1685–1692.
Malomed, B. A. and Tasgal, R. S. (1994). Vibration modes
of a gap soliton in a nonlinear optical medium. Phys.
Rev. E, 49:5787–5796.
Mandelik, D., Morandotti, R., Aitchison, J. S., and Silber-
berg, Y. (2004). Gap solitons in waveguide arrays.
Phys. Rev. Lett., 92:093904.