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Abstract: In the recent years of the GWAS era, large-scale genotyping of million polymorphisms (SNPs) among 
thousands of patients have identified new disease predisposition loci. However, these conventional 
GWAS statistical models only analyse SNPs singularly and cannot detect significant SNP-SNP (gene-
gene) interaction. Studies of interacting genetic variants (SNPs) are useful to elucidate a disease’s 
underlying biological pathway. Therefore, a powerful and efficient statistical model to detect SNP-
SNP interaction is urgently needed. We hypothesize that among all the exhaustive model patterns of 
interaction (>100), only limited patterns are plausible based on the principle of protein-protein 
interaction (in the context of GWAS data analysis). The production of proteins by the process of 
translation of DNA predicts that gene-gene interaction resulting in a phenotype should only occur in 
classical genetic epistasis models, such as dominant-dominant, and recessive-recessive models. We 
developed a statistical analysis model, IAC (Interaction Analysis by Chi-Square), to examine such 
interactions. We then exhausted different population and statistical parameters, upon a total of 532 
simulated case-control experiments to study the effects of these parameters on statistical power and 
type I error of using an interaction vs. singular SNP analysis. Our method has also detected potential 
pairwise interactions associated with Parkinson's disease that were previously undetected in 
conventional methods. We showed that the detection of SNP-SNP interaction is actually feasible using 
typical sample sizes found in common GWAS studies. This approach may be applied in 
complimentarily with other models in two-stage association tests to efficiently detect candidate SNPs 
for further study. 

1 INTRODUCTION 

1.1 Recent Progress in GWAS 

Advances in Genome-Wide Association Studies 
(GWAS) have been successful in identifying genetic 
variation carrying predisposition to diseases. 
Prostate cancer, breast cancer, ovarian cancer, 
colorectal cancer and many other diseases have all 
shown to have predisposition loci by GWAS 
(Musani et al., 2007). Polymorphic sites are present 
every 2000 to 3000 bp in the human genome. In the 
past five years, studies have detected many disease 

associated SNPs and genes which enhanced our 
understanding of cancer-related genetic variants 
(Visscher et al., 2012). For example, single 
nucleotide polymorphisms (SNPs) of more than 50 
genes are related to cancer susceptibility (Stadler et 
al., 2010). This era of GWAS and Haplotype 
analysis have helped researches to understand 
contribution of genetic variation in predisposition of 
most cancers (such as breast cancer) (Figure 1). 
GWAS greatly contribute to our understanding of 
disease predisposition. 
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1.2 Current Limitations in GWAS 

While GWAS was successful to find thousands of 
predisposition SNPs, a large portion of heritability is 
still unexplained and this problem of missing 
heritability has generated a large interest within the 
scientific community. Little progress in both 
analysis method of interaction and outcomes has 
been made so far. Interaction among genes and 
variants may account for this unexplained 
heritability, hence it may yield new insights into the 
details of complex traits.  

So far, less than 30% of heritability in breast 
cancer, colorectal cancer, and prostate cancer can be 
explained by predisposition genes and SNPs that 
have been discovered (Stadler et al., 2010) (Figure 
1).  Although conventional single SNP analyses can 
be preformed quickly nowadays (Purcell et al., 
2007), it is not designed to detect interactions 
between variants (Wan et al., 2010). As a result, 
researchers solely rely on increasing sample size (up 
to tens of thousands) to increase statistical power 
(Manolio et al., 2009). On the other hand, an 
efficient and universally acceptable statistical model 
would make detecting SNP-SNP interaction a more 
efficient and reliable process. Researchers had 
proposed a stage-wise approach, by accurately 
selecting subsets of SNPs during the first stage of an 
association test, such SNPs may be linked to higher 
order interactions or may further understand the 
phenotypic variance of cancer subsets and other 
diseases (Musani et al., 2007).  

 
Figure 1: [Data from: “Genome-Wide Association Studies 
of Cancer by Zsofia K. Stadler et al. 2010”] This is a 
representation of discovered genes and their affect on the 
genetic susceptibility of different cancer subsets. GWAS 
SNPs found with contribution to the predisposition of the 
respective cancer subset is marked in red. 

Even with SNP-SNP interaction analysis (in 3x3x2 
contingency table), of a typical GWAS microarray 
of 500,000 SNPs, a large number of 2-SNP pairs 
(125 billion tests) will be generated from the 

genotyping array; this large number of analyses 
makes the detection process over-exhaustive 
(Schüpbach et al., 2010). Currently all these analysis 
approaches, exhaustively exploit all possible 
interaction pattern enumerations in each of the 3x3 
genotype interaction table.  

In short, the search space for interaction is too 
large and will result in reduced statistical power, 
leading to an increased false positive rate (type I 
error). Although potential statistical solutions to 
exhaust all these models have been proposed (Wan 
et al., 2010) it may not be the most efficient and 
appropriate analytical approach. The need for an 
appropriate analysis method is exacerbated by 
failure to replicate results from other association 
studies.  

1.3 Our Solution 

Here, based on the biological principles of Protein-
Protein Interaction (PPI), we propose that 8 
interaction patterns (4 dominant-dominant, 4 
recessive-recessive) (Figure 3) are plausible in it's 
biological context; this contrasts to the exhaustive 
models from exhaustive enumerations, many of 
which have their biological plausibility questioned 
(Figure 8). Ultimately, these unnecessary and 
biologically implausible exhaustive searches would 
increase computational burdens and would 
subsequently be counterproductive (Li and Reich, 
2000).   

Studies of model organisms (saccharomyces 
cerevisiae) have shown that interactions occur 
frequently and have strong effects on certain 
phenotypes (Raval and Ray, 2013). These studies 
have shown the presence of dominant-dominant and 
recessive-recessive interactions (Segrè et al., 2005) 
(Venturi et al., 2000) from PPI analysis through the 
two-hybrid screening. The presence of underlying 
biological epistasis in model organisms suggests a 
need to base statistical analysis on biological 
constraints of protein interactions (Emily et al., 
2009). 

Interaction Analysis by Chi-Square (IAC) 
applies classical epistasis models (dominant-
dominant, recessive-recessive) as biological 
constraints to reduce search space and computational 
intensity commonly associated with interaction 
testing in GWAS. Apart from applying our 
framework on 532 case-control simulations, we were 
also able to detect one pair of interacting SNPs 
associated with Parkinson's disease that was 
previously undetected with conventional analysis. 
Using a reduced dimension chi-square test, we have 
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found interaction patterns and parameters that 
present strong SNP-SNP interaction which 
conventional single SNP analyses fail to detect. For 
the simulations, we used parameters that are realistic 
and similar to those of GWAS and have studied 
statistical power in the computational analysis.  The 
results have demonstrated benefits of analysing the 
generated datasets with IAC along with focused 
searches amongst plausible interaction patterns in 
light of PPI. Statistical power was determined by 
using 60,000 emulated case-control datasets under 
varying sample sizes and parameters. This chi-
square test with reduced dimensions may be useful 
for the identification of SNP-SNP interaction in 
GWAS. 

2 MODELS AND METHODS 

2.1 Biological Plausibility of 
Interaction Model 

Great deals of research efforts in the past have 
attempted to screen for all possible interaction 
patterns in GWAS. In order to be exhaustive, 
investigators enumerated all possible patterns of 
interaction that is feasible in a 3x3x2  (Genotype A x 
Genotype B x Case-control) contingency table. 

Under such exhaustive searches, 100+ non-
redundant patterns have been defined. Our insight 
into this problem suggests that a majority of these 
investigation patterns are not biologically plausible. 

We base our hypothesis on the central dogma of 
biology in which the gene translation and protein-
protein interactions occur in one of the recognized 
patterns implemented directly to its statistical 
augmentation.  

Protein-protein interactions occur either as 
ligand-receptor pair or as polymeric subunits of a 
protein complex, which must have corresponding 
biochemical characteristics in order to interact (it is 
also applicable to a ligand and receptor pair)  
(Jones and Thornton, 2009) (Figure 2).  

Wet-laboratory experiments support the notion 
of limited ways of interaction between proteins. 
Studies in the past have shown that protein inter-
allelic complementation has the ability to produce 
enough biochemical activity to express or regulate a 
multi-protein complex (Steingrimson et al., 2003). 
The physical interaction of mutated protein subunits 
(Figure 2) only occurs under certain circumstances 
(for example facilitated by the particular allele of a 
polymorphism) due to biochemical constraints. To 
show this, Bondos et al. (2004) used the yeast two-
hybrid assay to assess which proteins interact with a 
Hox  protein  and  found  that only a few  out  of  the  

 
Figure 2: (opposite page). This shows the flow of information from the central dogma to statistical augmentation in the 3x3 
genotypic interaction table. Uniform transcription leads to a number of possible random interactions (depending on if the 
protein is a monomer or dimer) at the subunit level. In this case, the "healthy" subunit pair is assigned at random (recessive-
recessive) depending on its role in the multi-protein complex. Biological action scores(~) are then calculated by the 
probability a interaction will yield the assigned "healthy" protein by the specific genotype.  
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many proteins tested were able to physically interact 
with each other. Conformational epistasis (Ortlund 
et al., 2009) describes the theory that proteins may 
interact in many possible ways, but only a few 
biochemical pathways are functionally plausible as 
there are many constraints due to evolutionary 
recourses. 

The models are based on the assumption that the 
constraints of PPI are based on three biochemical 
principles:  

(I) Protein A (encoded by gene A with 2 alleles 
A or a) and protein B (encoded gene B with allele B 
or b) interacts as subunits of a protein complex or a 
ligand and receptor pair. 

(II) Uniform transcriptions of both copies of the 
gene (both paternal and maternal copies) 

(III) Random pairing of subunits from translated 
products of the two copies. 
 

We confined the statistical analysis of interaction 
to biologically plausible model patterns that is 4 
dominant-dominant and 4 recessive-recessive 
configurations.  

 
Figure 3: Eight biologically plausible interaction patterns. 

Supported by studies from Dummer et al. (2015), 
Phillips (2008) and Emily et al. (2009), we are 
convinced that these constraints based on biological 
epistasis are essential; however, very few existing 
algorithms have taken them into account.  

2.2 Reduced Dimension Chi-Square 
Test for Interaction 

We used 266 simulation settings that are based on 
the simulated genotype counts of the bi-allelic 3x3x2 
contingency table. Conventional univariate analysis, 
such as the ones used in PLINK (Purcell et al., 
2007), are often unable to detect interacting SNP 
pairs; hence, specific analyses for modelling 
interaction needs to be preformed. The power to 
detect interaction by our method is characterized by 

the simulated counts within the table for detecting 
SNP-SNP interaction. A chi-square test is done by 
pooling high-risk interaction counts (dominant-
dominant) and low risk (recessive-recessive) 
interaction counts to calculate the genotype 
frequency distributions. It efficiently reduces a 
3x3x2 table to a series of 2x2 tables (Figure 4). This 
statistical approach is shown to be a balanced 
solution for data sparsity and computational burdens 
(Schwarz et al., 2010).  
 

 

Figure 4: In this illustration, a model of dominant-
dominant interactions is shown; the four genotype 
interactions (aa-bb, Aa-bb, aa-Bb, Aa-BB) are considered 
to have many similar biological activities, hence they are 
combined and collapsed as the high-risk interactions in the 
2x2 table. The four other recessive-recessive interactions 
are combined in the same fashion as the low risk 
interaction. In conventional interaction analyses, each cell 
is considered separated. 

2.3 Dataset Generation  

We generate a genotype distribution for a population 
of a given sample size to generate 60,000 datasets 
(studies) with genotype counts of assigned 
parameters (sample size, MAF, odds ratio) for 
different simulations. Based on the Hardy-Weinberg 
principle, we first generate genotype frequencies of 
2 SNPs based on 2 given MAF’s. Then, 
combinations of given Minor Allele Frequency 
(MAF) of SNP A and SNP B, disease relative risk, 
one of the eight biologically plausible interaction 
patterns, sample sizes, proportions and counts may 
be generated in each of the cells in the 3x3x2 table 
using a multinomial distribution.  

IAC converts GWAS data from 9 genotype 
counts into high risk and low risk counts (2 counts)  
(along with reducing the observed 3x3x2 into 2x2 
contingency table). This allows for clear illustrations 
in interaction pattern, improving our assessment of 
the model's biological plausibility.  

2.4 IAC Dataset Analysis 

From each collection of simulation datasets of 
different population parameters and settings, the 
constraints were applied when determining statistical 
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power of the interaction analysis and marginal 
singular SNP analysis. The Bonferroni correction 
was used to correct for multiple testing.  

We approached all the analyses conservatively 
by placing the Bonferroni corrected P-value for false 
discovery rates at a global level of 0.05,which 
ensures that the probability of having false positives 
does not exceed the nominal significance level.  

While calculating the power and type I error with 
IAC, a conventional single SNP analysis is also run 
for the same dataset. In the results, the average type 
I errors for the conventional method analysis results 
barely reached the nominal false positive 
significance level of global 5%, thus deeming the 
setup for the conventional method to be accurate and 
conservative as well. The same datasets are 
spontaneously converted using the same genotype 
distributions and probabilities to fit two 
conventional 2x3 single SNP association tests for 
determining the statistical significance if the Single 
SNP analysis is applied. To handle possible data 
sparsity, the observed and expected values for the 
modified setup are calculated once again for 
statistical power. In order to ensure fairness in 
comparison of the two models, both models are 
analysed by their p-values using the same 
significance filters and other SPC. Our 
supplementary data (included in the website) 
includes the records for all the simulations and the 
analysis setup. 

3 RESULTS 

3.1 Simulation Results 

We have exhausted many parameter configurations 
and have arrived at several important conclusions: 

We have focused the search amongst the 8 
interaction patterns instead of the exhaustive search 
of over 100 interaction patterns commonly used 
nowadays in various algorithms) and have shown 
that the IAC analysis is more efficient in detecting 
interaction than conventional single SNP analyses. 
We are certain that on top of these 8 pathologically 
feasible patterns other patterns may exist and have 
not been investigated. However, these 8 models 
should be most representative of the biological 
nature of gene-gene interaction.  

Both IAC and the conventional single SNP 
analysis show that type I error levels do not (or 
barely) exceed the nominal significance number for 
false positives. As the management of false positives 
is a common factor in computational burdens 

(Visscher et al., 2012) our controlled type I error 
rates suggested our approach is conservative.  As we 
approach the data conservatively, we deem all power 
percentages >80% to have enough power to detect 
underlying significant SNP-SNP interaction. The 
simulation analysis is comprised of many 
population-based variables such as Odds Ratio, 
Sample Size, disease distribution pattern and Minor 
Allele Frequency. The prevalence of the disease 
does not affect the statistical power since it does not 
affect the population proportions or genotype 
frequencies. Below we summarize the effects of 
sample size, MAFs and interaction patterns on the 
ability to detect significant interaction in GWAS. 

We exhaustively analyse our method under many 
parameter settings (table 1). The 532 mass-
simulation comparisons (266 by IAC, 266 by Single 
SNP analysis) have contained the empirical power 
and type I error for 60,000 simulations each. 

Table 1: The exhaustive simulations in this study used 
these parameters interchangeably for different 
investigations. Please note that this table only depicts the 
types of parameters we have tested (not the quantity of the 
simulations); many of these settings were repeated with 
other parameters for other specific investigations.  

 

3.2 Effect of Sample Size 

As the sample size (n) increases, the p-value 
decreases accordingly (Spencer et al., 2009). A large 
sample size, though preferred, is extremely difficult 
to acquire in GWAS databases for the detection of 
statistically significant interactions (Bush and Moore, 
2012). Using the results from our simulation, our 
method clearly shows a dramatic improvement of 
power (along with conservative type I error rates) 
compared to the 2x3 single SNP analysis. IAC not 
only requires less sample size to detect interaction, 
but it is also has greater power to detect interactions 
with recessive-recessive patterns (Figure 5). By 
setting the MAF of both SNPs at 0.5 (the best-case 
scenario), the dominant-dominant patterns are able 
to detect interaction at only 4000 individuals with 
IAC, while the conventional method requires 
approximately 8000 individuals. IAC is able to 
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detect recessive low-risk patterns at about 14000 
individuals, while the conventional method requires 
unrealistic sample sizes (more than 20,000).  

 
Figure 5: The results from using IAC (top graph) and the 
conventional single SNP analysis (bottom graph) with 
sample sizes ranging from 2000-15000. The MAF (SNP 
A=0.5, SNP B=0.5), odds ratio and all other simulation 
parameter settings (besides sample size) remained the 
same throughout. The statistical power for SNP A and 
SNP B for the single SNP analysis was averaged for the 
trend line.  

As all the plausible dominant and recessive patterns 
exhibit extremely similar trends in statistical power, 
we have decided to use only one of each to simplify 
the graphs for viewing (Figure 5). Our results 
conclude that significant interaction may be detected 
using the sample sizes commonly implemented 
amongst current GWAS studies.  

3.3 Odds Ratio 

A disease’s odds ratio can significantly impact the 
genotype  frequencies  observed  in patients and thus 

 
Figure 6: The results from using IAC and the conventional 
single SNP analysis with varying odds ratios. The 
interaction pattern (dominant-dominant), sample size 
(4000) and SNP A MAF (0.1) remained constant 
throughout.  

greatly influence the power of statistical tests. We 
based our primary analysis on two common disease 
odds ratios of 1.5 and 2 and to compare the power of 
both methods. In this scenario (Figure 6), it is clear 
that IAC may detect significant interaction as long 
as the MAF is above 0.2. 

3.4 Minor Allele Frequency (MAF)  

Like the odds ratio, the MAF greatly affects the 
power of the analysis (Lettre et al., 2007). Though 
most of the trends exhibit constant or exponential-
like growth of power with increasing MAF. 
Sometimes, unexpected power curves may still 
occur when using MAF as a variable. Computing the 
genotypic distributions on the interaction table 
allows us to use the population disease 
characteristics to consider behaviours of interacting 
proteins (Moore and Williams, 2005), which 
conventional methods may not detect.  

 
Figure 7: A relationship between Minor Allele 
Frequencies and statistical power is shown with dominant-
dominant interaction patterns at a sample size of 4000. 
MAF of SNP A remains at 0.5.  

3.5 Parkinson's Disease Dataset 
Analysis 

Parkinson's disease is a neurodegenerative disorder 
that affects an estimated seven to 10 million people 
worldwide. Fung et al. (2006) genotyped 408,803 
unique SNPs for 267 Parkinson's disease patients 
and 270 neurologically normal controls. In their 
analysis of the data, they did not identify any 
significant associations using the single SNP 
analysis. Different Bayesian models, such as the 
ones implemented in Tang et al. (2009), were also 
not able to detect any interaction effect. After 
running the dataset with IAC, we were able to 
replicate and confirm one dominant-dominant 
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interaction between SNPs rs849523 (chromosome 2) 
and rs10519435 (chromosome 5) with a raw p-value 
of 1.79x10-3. Although it did not reach a genome-
wide level of statistical significance, it serves here as 
a demonstration of feasibility of our approach.  The 
SNPs are located in the NRP2 and LVRN genes 
respectively. NRP2 is related to axon degeneration 
and LVRN has been associated with level of very 
long chain fatty acid. Both of them are relevant to 
neuronal function. However, more experiment and 
validation are needed to confirm this preliminary 
finding.  

4 DISCUSSION 

The results indicated better efficiency of the IAC 
analysis approach compared to conventional analysis 
in many aspects, including; the detection of 
interaction under plausible interaction patterns, the 
detection of interaction under a given sample size or 
relative risk and the detection of interaction under 
unexpected power fluctuations. We believe that this 
is an ideal search approach for future interaction 
studies to increase efficiency when selecting subsets 
of SNPs for further validation. Our results have 
shown that most trends are biologically multivariate 
(Turner and Bush, 2011) and thus IAC does not 
require any multiplicative model to conduct high 
capacity genome wide scans. Two-stage association 
tests are becoming increasingly popular for 
interaction analysis, in which the first stage is crucial 
for selecting interactions with high power for in-
depth analysis (Feng et al., 2007).  

For datasets with genetic interaction, which 
results in no main marginal effect, univariate tests 
are not able to exhibit power in conventional single 
SNP analysis (Goodman et al., 2006). Several 
univariate models such as FastEpistasis (Schüpbach 
et al., 2010), TEAM (Zhang et al., 2010)and 
EPIBLASTER (Kam-Thong et al., 2011) can be 
computationally intensive when handling datasets 
with complicated interaction patterns and difficult 
sample sizes (Moore and Williams 2005). In fact, 
parametric models such as linear and logistic 
regression fail to perform well when population 
characteristics cannot be known a priori (Moore et 
al., 2006). With Bayesian models, the process is too 
computationally intensive. Furthermore, the 
computationally efficient model BOOST (Wan et 
al., 2010) has no consideration of biological 
assumptions. IAC can work complementarily with 
network-based approaches (Emily et al., 2009). By 
filtering potential SNP pairs associated with certain 

known protein-protein interactions, the biological 
plausibility of the test for statistical epistasis will 
substantially improve.  

The advantage of IAC is that biologically 
redundant patterns are excluded, reducing search 
space and enhancing power, also promoting lower 
false positive rates. Biologically plausible 
interactions rarely exhibit univariate and/or linear 
trends in statistical power (Boulesteix et al., 2012), 
and have biochemical constraints in PPI (Emily et 
al., 2009), hence more studies need to transverse the 
disunity between the biological principles of 
association and pure statistical reasoning to increase 
productivity in exploiting SNP-SNP interactions. 
Our results not only showed the efficiency of our 
statistical distributions (using IAC) but have also 
proposed evidence that detecting significant SNP-
SNP interaction should be feasible in the common 
settings of GWAS studies. We have also shown 
those scenarios in which the detection of SNP-SNP 
interaction is not possible due to lack of statistical 
power (eg. extremely low power in recessive-
recessive interaction patterns).  

5 CONCLUSIONS 

This investigation shows that by using biological 
principles of PPI to constrain statistical analysis, 
interaction tests become more effective. Once we are 
able to understand the behaviour of biochemical 
interactions, we may further enhance the practicality 
of computational genetic analysis. Thornton-wells et 
al., (2004) also believed that “the real power of 
existing and yet-to-be-developed methods lies in our 
ability to marry them into a comprehensive approach 
to genetic analysis, so that their relative strengths 
and weaknesses can be balanced and few alternative 
hypotheses are left uninvestigated”. Through this 
experiment, we were also able to detect two-locus 
interaction in GWAS.  
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SUPPLEMENTARY 
INFORMATION 

Additional materials can be found at our website: 
www.interactionanalysisbychisquare.com 
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