Software Design Principles for Digital Behavior Change Interventions - Lessons Learned from the MOPO Study

Lauri Tuovinen, Riikka Ahola, Maarit Kangas, Raija Korpelainen, Pekka Siirtola, Tim Luoto, Riitta Pyky, Juha Röning, Timo Jämsä

2016

Abstract

Using the Internet as a delivery channel has become a popular approach to conducting health promotion interventions, and the evidence indicates that such interventions can be effective. In this paper we propose a set of design principles and a generic architectural model based on experiences accumulated while developing a Web-based application for a physical activation intervention. The proposed principles address the development of an intervention application as an abstract entity, a platform for gathering data for the needs of three principal stakeholder groups. The principles are derived from the purposes for which the data is gathered and the constraints that may limit the availability of desired data; by observing these principles, developers of intervention applications can identify the design trade-offs they need to make to ensure that all stakeholder needs are adequately fulfilled. An evolutionary development process is proposed as a way of gradually working toward an application that induces the desired effect on the behavior of the users.

References

  1. Ahola, R., Pyky, R., Jämsä, T., Mäntysaari, M., Koskimäki, H., Ikäheimo, T. M., Huotari, M.-L., Röning, J., Heikkinen, H. I., and Korpelainen, R. (2013). Gamified physical activation of young men - a multidisciplinary population-based randomized controlled trial (MOPO study). BMC Public Health, 13(32).
  2. Alahäivälä, T., Oinas-Kukkonen, H., and Jokelainen, T. (2013). Software architecture design for health BCSS: Case Onnikka. In Proceedings of the 8th International Conference on Persuasive Technology, pages 3-14.
  3. Barak, A., Klein, B., and Proudfoot, J. G. (2009). Defining Internet-supported therapeutic interventions. Annals of Behavioral Medicine, 38(1):4-17.
  4. Bennett, G. G. and Glasgow, R. E. (2009). The delivery of public health interventions via the Internet: Actualizing their potential. Annual Review of Public Health, 30:273-292.
  5. Brouwer, W., Kroeze, W., Crutzen, R., de Nooijer, J., de Vries, N. K., Brug, J., and Oenema, A. (2011). Which intervention characteristics are related to more exposure to Internet-delivered healthy lifestyle promotion interventions? a systematic review. Journal of Medical Internet Research, 13(1):e2.
  6. Cassell, M. M., Jackson, C., and Cheuvront, B. (1998). Health communication on the Internet: An effective channel for health behavior change? Journal of Health Communication: International Perspectives, 3(1):71-79.
  7. Cunningham, J. A., Wild, T. C., Cordingley, J., Van Mierlo, T., and Humphreys, K. (2009). A randomized controlled trial of an Internet-based intervention for alcohol abusers. Addiction, 104(12):2023-2032.
  8. Danaher, B. G. and Seeley, J. R. (2009). Methodological issues in research on Web-based behavioral interventions. Annals of Behavioral Medicine, 38(1):28-39.
  9. Frenn, M., Malin, S., Brown, R. L., Greer, Y., Fox, J., Greer, J., and Smyczek, S. (2005). Changing the tide: An Internet/video exercise and low-fat diet intervention with middle-school students. Applied Nursing Research, 18(1):13-21.
  10. Graham, A. L., Cobb, N. K., Raymond, L., Sill, S., and Young, J. (2007). Effectiveness of an Internet-based worksite smoking cessation intervention at 12 months. Journal of Occupational & Environmental Medicine, 49(8):821-828.
  11. Jauho, A.-M., Pyky, R., Ahola, R., Kangas, M., Virtanen, P., Korpelainen, R., and Jämsä, T. (2015). Effect of wristworn activity monitor feedback on physical activity behavior: A randomized controlled trial in Finnish young men. Preventive Medicine Reports, 2:628-634.
  12. Kensing, F. and Blomberg, J. (1998). Participatory design: Issues and concerns. Computer Supported Cooperative Work, 7(3-4):167-185.
  13. Kinnunen, H., Tanskanen, M., Kyr öläinen, H., and Westerterp, K. R. (2012). Wrist-worn accelerometers in assessment of energy expenditure during intensive training. Physiological Measurement, 33(11):1841-1854.
  14. Klasnja, P. and Pratt, W. (2009). Healthcare in the pocket: Mapping the space of mobile-phone health interventions. Journal of Biomedical Informatics, 45(1):184- 198.
  15. Koskinen, E. and Salminen, J. (2007). A customizable mobile tool for supporting health behavior interventions. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 5907-5910.
  16. LaMendola, W. and Krysik, J. (2008). Design imperatives to enhance evidence-based interventions with persuasive technology: A case scenario in preventing child maltreatment. Journal of Technology in Human Services, 26(2-4):397-422.
  17. Linke, S., Murray, E., Butler, C., and Wallace, P. (2007). Internet-based interactive health intervention for the promotion of sensible drinking: Patterns of use and potential impact on members of the general public. Journal of Medical Internet Research, 9(2):e10.
  18. Luoto, T., Korpelainen, R., Röning, J., Ahola, R., Enwald, H., Hirvonen, N., Tuovinen, L., and Heikkinen, H. I. (2014). Gamified persuasion: User experiences of an online activation service. International Journal of Sociotechnology and Knowledge Development, 6(4).
  19. Mohr, D. C., Schueller, S. M., Montague, E., Burns, M. N., and Rashidi, P. (2014). The behavioral intervention technology model: An integrated conceptual and technological framework for eHealth and mHealth interventions. Journal of Medical Internet Research, 16(6):e146.
  20. Napolitano, M. A., Fotheringham, M., Tate, D., Sciamanna, C., Leslie, E., Owen, N., Bauman, A., and Marcus, B. (2003). Evaluation of an Internet-based physical activity intervention: A preliminary investigation. Annals of Behavioral Medicine, 25(2):92-99.
  21. Nguyen, B. V., Burstein, F., and Fisher, J. (2015). Improving service of online health information provision: A case of usage-driven design for health information portals. Infomation Systems Frontiers, 17(3):493-511.
  22. Oenema, A., Brug, J., Dijkstra, A., de Weert, I., and de Vries, H. (2008). Efficacy and use of an Internetdelivered computer-tailored lifestyle intervention, targeting saturated fat intake, physical activity and smoking cessation: A randomized controlled trial. Annals of Behavioral Medicine, 35(2):125-135.
  23. Saul, J. E., Schillo, B. A., Evered, S., Luxenberg, M. G., Kavanaugh, A., Cobb, N., and An, L. C. (2007). Impact of a statewide Internet-based tobacco cessation intervention. Journal of Medical Internet Research, 9(3):e28.
  24. Skinner, H. A., Maley, O., and Norman, C. D. (2006). Developing Internet-based eHealth promotion programs: The spiral technology action research (STAR) model. Health Promotion Practice, 7(4):406-417.
  25. Strecher, V. (2007). Internet methods for delivering behavioral and health-related interventions (eHealth). Annual Review of Clinical Psychology, 3:53-76.
  26. Tate, D. F., Finkelstein, E. A., Khavjou, O., and Gustafson, A. (2009). Cost effectiveness of Internet interventions: Review and recommendations. Annals of Behavioral Medicine, 38(1):40-45.
  27. Van Den Berg, M. H., Ronday, H. K., Peeters, A. J., Le Cessie, S., Van Der Giesen, F. J., Breedveld, F. C., and Vliet Vlieland, T. P. M. (2006). Using Internet technology to deliver a home-based physical activity intervention for patients with rheumatoid arthritis: A randomized controlled trial. Arthritis Care & Research, 55(6):935-945.
  28. Webb, T. L., Joseph, J., Yardley, L., and Michie, S. (2010). Using the Internet to promote health behavior change: A systematic review and meta-analysis of the impact of theoretical basis, use of behavior change techniques, and mode of delivery on efficacy. Journal of Medical Internet Research, 12(1):e4.
Download


Paper Citation


in Harvard Style

Tuovinen L., Ahola R., Kangas M., Korpelainen R., Siirtola P., Luoto T., Pyky R., Röning J. and Jämsä T. (2016). Software Design Principles for Digital Behavior Change Interventions - Lessons Learned from the MOPO Study . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 175-182. DOI: 10.5220/0005656101750182


in Bibtex Style

@conference{healthinf16,
author={Lauri Tuovinen and Riikka Ahola and Maarit Kangas and Raija Korpelainen and Pekka Siirtola and Tim Luoto and Riitta Pyky and Juha Röning and Timo Jämsä},
title={Software Design Principles for Digital Behavior Change Interventions - Lessons Learned from the MOPO Study},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016)},
year={2016},
pages={175-182},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005656101750182},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, (BIOSTEC 2016)
TI - Software Design Principles for Digital Behavior Change Interventions - Lessons Learned from the MOPO Study
SN - 978-989-758-170-0
AU - Tuovinen L.
AU - Ahola R.
AU - Kangas M.
AU - Korpelainen R.
AU - Siirtola P.
AU - Luoto T.
AU - Pyky R.
AU - Röning J.
AU - Jämsä T.
PY - 2016
SP - 175
EP - 182
DO - 10.5220/0005656101750182