REFERENCES
Adams, R. and Bischof, L. (1994). Seeded region grow-
ing. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 16(6):641–647.
Baum, L. E. and Petrie, T. (1966). Statistical inference for
probabilistic functions of finite state markov chains.
The annals of mathematical statistics, pages 1554–
1563.
Canny, J. (1986). A computational approach to edge detec-
tion. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, (6):679–698.
Cocosco, C. A., Kollokian, V., Kwan, R. K.-S., Pike, G. B.,
and Evans, A. C. (1997). Brainweb: Online interface
to a 3d mri simulated brain database. In NeuroImage.
Citeseer.
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the em
algorithm. Journal of the royal statistical society. Se-
ries B (methodological), pages 1–38.
Deng, H. and Clausi, D. A. (2004). Unsupervised im-
age segmentation using a simple mrf model with a
new implementation scheme. Pattern recognition,
37(12):2323–2335.
Dice, L. R. (1945). Measures of the amount of ecologic
association between species. Ecology, 26(3):297–302.
Held, K., Kops, E. R., Krause, B. J., Wells III, W. M., Kiki-
nis, R., and Muller-Gartner, H.-W. (1997). Markov
random field segmentation of brain mr images. Medi-
cal Imaging, IEEE Transactions on, 16(6):878–886.
Hochbaum, D. S. (2001). An efficient algorithm for image
segmentation, markov random fields and related prob-
lems. Journal of the ACM (JACM), 48(4):686–701.
Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes:
Active contour models. International journal of com-
puter vision, 1(4):321–331.
Kato, Z. and Pong, T.-C. (2006). A markov random field
image segmentation model for color textured images.
Image and Vision Computing, 24(10):1103–1114.
Kolda, T. G., Lewis, R. M., and Torczon, V. (2003). Op-
timization by direct search: New perspectives on
some classical and modern methods. SIAM review,
45(3):385–482.
Manjunath, B. and Chellappa, R. (1991). Unsupervised tex-
ture segmentation using markov random field models.
IEEE Transactions on Pattern Analysis & Machine In-
telligence, (5):478–482.
Nelder, J. A. and Mead, R. (1965). A simplex method
for function minimization. The computer journal,
7(4):308–313.
Ouadfel, S. and Batouche, M. (2003). Ant colony system
with local search for markov random field image seg-
mentation. In Image Processing, 2003. ICIP 2003.
Proceedings. 2003 International Conference on, vol-
ume 1, pages I–133. IEEE.
Panjwani, D. K. and Healey, G. (1995). Markov random
field models for unsupervised segmentation of tex-
tured color images. Pattern Analysis and Machine In-
telligence, IEEE Transactions on, 17(10):939–954.
Sahoo, P. K., Soltani, S., and Wong, A. K. (1988). A survey
of thresholding techniques. Computer vision, graph-
ics, and image processing, 41(2):233–260.
Szeliski, R., Zabih, R., Scharstein, D., Veksler, O.,
Kolmogorov, V., Agarwala, A., Tappen, M., and
Rother, C. (2008). A comparative study of en-
ergy minimization methods for markov random fields
with smoothness-based priors. Pattern Analysis
and Machine Intelligence, IEEE Transactions on,
30(6):1068–1080.
Wyatt, P. P. and Noble, J. A. (2003). Map mrf joint seg-
mentation and registration of medical images. Medi-
cal Image Analysis, 7(4):539–552.
Yousefi, S., Azmi, R., and Zahedi, M. (2012). Brain tis-
sue segmentation in mr images based on a hybrid of
mrf and social algorithms. Medical image analysis,
16(4):840–848.
Zhang, Y., Brady, M., and Smith, S. (2001). Segmenta-
tion of brain mr images through a hidden markov ran-
dom field model and the expectation-maximization al-
gorithm. Medical Imaging, IEEE Transactions on,
20(1):45–57.
Hidden Markov Random Fields and Direct Search Methods for Medical Image Segmentation
161