the data-set changes because of the change in envi-
ronment.
The pose data-set will be further experimented
and evaluated. The features extracted from the trained
CNN shall be used for solving the HGR problem.
ACKNOWLEDGEMENT
This work is supported by the National Research
Fund, Luxembourg, under the AFR project 7019190.
REFERENCES
Buchmann, V., Violich, S., Billinghurst, M., and Cockburn,
A. (2004). Fingartips: gesture based direct manipula-
tion in augmented reality. In Proceedings of the 2nd
international conference on Computer graphics and
interactive techniques in Australasia and South East
Asia, pages 212–221. ACM.
Chen, Q., Georganas, N. D., and Petriu, E. M. (2007).
Real-time vision-based hand gesture recognition us-
ing haar-like features. In Instrumentation and Mea-
surement Technology Conference Proceedings, 2007.
IMTC 2007. IEEE, pages 1–6. IEEE.
Davis, J. and Shah, M. (1994). Recognizing hand ges-
tures. In Computer VisionECCV’94, pages 331–340.
Springer.
Glorot, X. and Bengio, Y. (2010). Understanding the diffi-
culty of training deep feedforward neural networks. In
International conference on artificial intelligence and
statistics, pages 249–256.
Gupta, N., Mittal, P., Roy, S. D., Chaudhury, S., and Baner-
jee, S. (2002). Developing a gesture-based interface.
Journal of the Institution of Electronics and Telecom-
munication Engineers, 48(3):237–244.
Hasan, H. S. and Kareem, S. A. (2012). Human computer
interaction for vision based hand gesture recognition:
A survey. In Advanced Computer Science Applica-
tions and Technologies (ACSAT), 2012 International
Conference on, pages 55–60. IEEE.
Just, A. and Marcel, S. (2009). A comparative study of
two state-of-the-art sequence processing techniques
for hand gesture recognition. Computer Vision and
Image Understanding, 113(4):532–543.
LeCun, Y., Jackel, L., Bottou, L., Cortes, C., Denker, J. S.,
Drucker, H., Guyon, I., Muller, U., Sackinger, E.,
Simard, P., et al. (1995). Learning algorithms for clas-
sification: A comparison on handwritten digit recog-
nition. Neural networks: the statistical mechanics
perspective, 261:276.
Lin, H.-I., Hsu, M.-H., and Chen, W.-K. (2014). Human
hand gesture recognition using a convolution neu-
ral network. In Automation Science and Engineer-
ing (CASE), 2014 IEEE International Conference on,
pages 1038–1043. IEEE.
Liu, A., Tendick, F., Cleary, K., and Kaufmann, C. (2003).
A survey of surgical simulation: applications, tech-
nology, and education. Presence: Teleoperators and
Virtual Environments, 12(6):599–614.
Nagi, J., Ducatelle, F., Di Caro, G., Cires¸an, D., Meier, U.,
Giusti, A., Nagi, F., Schmidhuber, J., Gambardella,
L. M., et al. (2011). Max-pooling convolutional neu-
ral networks for vision-based hand gesture recogni-
tion. In Signal and Image Processing Applications
(ICSIPA), 2011 IEEE International Conference on,
pages 342–347. IEEE.
Schl
¨
omer, T., Poppinga, B., Henze, N., and Boll, S. (2008).
Gesture recognition with a wii controller. In Proceed-
ings of the 2nd international conference on Tangible
and embedded interaction, pages 11–14. ACM.
Tang, D., Chang, H. J., Tejani, A., and Kim, T.-K. (2014).
Latent regression forest: Structured estimation of 3d
articulated hand posture. In Computer Vision and Pat-
tern Recognition (CVPR), 2014 IEEE Conference on,
pages 3786–3793. IEEE.
Tompson, J., Stein, M., Lecun, Y., and Perlin, K. Real-
time continuous pose recovery of human hands using
convolutional networks, journal = ACM Transactions
on Graphics, year = 2014, month = August, volume =
33.
Tompson, J., Stein, M., Lecun, Y., and Perlin, K. (2014).
Real-time continuous pose recovery of human hands
using convolutional networks. ACM Trans. Graph.,
33(5):169:1–169:10.
Weir, R., Mitchell, M., Clark, S., Puchhammer, G.,
Haslinger, M., Grausenburger, R., Kumar, N., Hof-
bauer, R., Kushnigg, P., Cornelius, V., et al. (2008).
The intrinsic hand–a 22 degree-of-freedom artificial
hand-wrist replacement. Myoelectric Symposium.
Xu, C. and Cheng, L. (2013). Efficient hand pose esti-
mation from a single depth image. In Computer Vi-
sion (ICCV), 2013 IEEE International Conference on,
pages 3456–3462. IEEE.
Xu, Z., M
¨
oller, T., Kraft, H., Frey, J., and Albrecht, M.
(2008). Photonic mixer device. US Patent 7,361,883.
Zhang, X., Chen, X., Wang, W.-h., Yang, J.-h., Lantz, V.,
and Wang, K.-q. (2009). Hand gesture recognition
and virtual game control based on 3d accelerometer
and emg sensors. In Proceedings of the 14th Interna-
tional Conference on Intelligent User Interfaces, IUI
’09, pages 401–406, New York, NY, USA. ACM.
Zobl, M., Geiger, M., Schuller, B., Lang, M., and Rigoll,
G. (2003). A real-time system for hand gesture con-
trolled operation of in-car devices. In Multimedia
and Expo, 2003. ICME ’03. Proceedings. 2003 Inter-
national Conference on, volume 3, pages III–541–4
vol.3.
Adding Model Constraints to CNN for Top View Hand Pose Recognition in Range Images
177