REFERENCES
Antzelevitch, C., Viskin, S., Shimizu, W., Yan, G., Kowey,
P., Zhang, L., Sicouri, S., Di Diego, J., and Burash-
nikov, A. (2007). Does Tpeak-Tend provide an index
of transmural dispersion of repolarization? Hearth
Rhythm, 4(8):1114–1119.
Arini, P. D., Bertr´an, G. C., Valverde, E. R., and Laguna, P.
(2008). T-wave width as an index for quantification
of ventricular repolarization dispersion: Evaluation in
an isolated rabbit heart model. Biomed. Signal Proc.
Control, 3:67–77.
Cai, B. and Jiang, X. (2014). A novel artificial neural
network method for biomedical prediction based on
matrix pseudo-inversion. J. of Biomed. Informatics,
48:114–121.
Chen, F., Pan, Y., Li, K., Cheng, K., and Huan, R. (2015).
Standard 12-lead ECG synthesis using a GA opti-
mized BP neural network. 7th International Confer-
ence on Advanced Computational Intelligence, 7:289–
293.
Di Diego, J. M., Sun, Z. Q., and Antzelevitch, C. (1996).
Ito and action potential notch are smaller in left vs.
right canine ventricular epicardium. A. J. Physiol.,
271:H548.
Dreiseitl, S. and Ohno-Machado, L.(2002). Logistic regres-
sion and artificial neural network classification mod-
els: a methodology review. J. of Biomed. Informatics,
35:352–359.
Fuller, M. S., S´andor, G., Punske, B., Taccardi, B.,
MacLeod, R. S., Ershler, P. R., Green, L. S., and Lux,
R. L. (2000). Estimates of repolarization and its dis-
persion from electrocardiographic measurements: di-
rect epicardial assesment in the canine heart. J. of
Electrocardiol., 33:171–180.
Han, J. and Moe, G. K. (1964). Nonuniform recovery of
excitability in ventricular muscle. Circ. Res., 14:44–
54.
Horowitz, L., Spear, J., and Moore, E. (1981). Relation
of endocardial and epicardial ventricular fibrillation
thresholds of the right and left ventricles. Am. J. Car-
diol., 48:698–701.
Kuo, C. S., Atarashi, H., Reddy, P., and Suracwicz, B.
(1985). Dispersion of ventricular repolarization and
arrhythmia: Study of two consecutive ventricular pre-
mature complexes. Circ., 72:370–376.
Kuo, C. S., Munakata, K., Reddy, P., and Surawicz, B.
(1983). Characteristics and possible mechanism of
ventricular arrhytmia dependent on the dispersion of
action potential. Circ., 67:1356–1367.
Laurita, K. R., Girouard, S. D., Fadi, G. A., and Rosen-
baum, D. S. (1998). Modulated dispersion explains
changes in arrhythmia vulnerability during premature
stimulation of the heart. Circ., 98:2774–2780.
Mendieta, J. G. (2012). Algoritmo para el delineado
de se˜nales ECG en un modelo animal empleando
t´ecnicas avanzadas de procesamiento de se˜nales.
Master Thesis. , Facultad de Ingenier´ıa de la Univer-
sidad de Buenos Aires.
Meyer, C. R. and Keiser, H. t. (1977). Electrocardiogram
baseline noise estimation and removal using cubic
spline and state-space computation techniques. Comp.
and Biomed. Res., 10:459–470.
Rosenbaum, D. S., Kaplan, D. T., Kanai, A., Jackson, L.,
Garan, H., Cohen, R. J., and Salama, G. (1991). Repo-
larization inhomogeneities in ventricular myocardium
change dynamically with abrupt cycle length shorten-
ing. Circ., 84:1333–1345.
Rosner, B. (1994). Fundamentals of Biostatistics. Duxbury
Press, fourth edition edition.
Shaikhina, T., Lowe, D., Daga, S., Briggs, D., Higgins, R.,
and Khovanova, N. (2015). Machine learning for pre-
dictive modelling based on small data in Biomedical
Engineering. IFAC-PapersOnLine, 48:469–474.
Shimizu, W. and Antzelevitch, C. (1998). Cellular basis
for the ECG features of the LQT1 form of the long
QT syndrome. efects of β adrenergic agonist and an-
tagonist and sodium channel blockers on transmural
dispersion of repolarization and torsades de pointes.
Circ., 98:2314–2322.
Smetana, P., Schmidt, A., Zabel, M., Hnatkova, K., Franz,
M., Huber, K., and Malik, M. (2011). Assessment of
repolarization heterogeneity for prediction of mortal-
ity in cardiovascular disease: peak to the end of the
T wave interval and nondipolar repolarization compo-
nents. J Electrocardiol, 44:301–308.
Spear, J. and Moore, E. (2000). Modulation of arrhyt-
mias by isoproterenol in a rabbit heart model of d-
Sotalol induced long QT intervals. American J. Phys-
iol, (279):H15–H25.
Surawicz, B. (1997). Ventricular fibrillation and disper-
sion of repolarization. J. Cardiovasc. Electrophysiol.,
8:1009–1012.
Noble, D. and Cohen, I. (1978). The interpretation of the
T wave of the electrocardiogram. Cardiovasc. Res.,
12:13–27.
Yan, G. and Jack, M. (2003). Electrocardiographic T wave:
A symbol of transmural dispersion of repolarization
in the ventricles. J. of Cardiovasc. Electrophysiol.,
14:639–640.
Yuan, S., Blomstr¨om-Lundqvist, C., Pherson, C., Wohl-
fart, B., and Olsson, S. B. (1996). Dispersion of
ventricular repolarization following double and triple
programmed stimulation: A clinical study using the
monophasic action potential recording technique. Eur.
Heart J., 17:1080–1091.
Zabel, M., Hohonloser, S. H., Beherens, S., Woosley, R. L.,
and Franz, M. R. (1997). Differential effects of d-
Sotalol, quinidine and amiodarone on dispersion of
ventricular repolarization in the isolated rabbit heart.
J. Cardiovascular Electrophysiol., 8:1239–1245.
Zabel, M., Portnoy, S., and Franz, M. R. (1995). Electro-
cardiographic indexes of dispersion of ventricular re-
polarization: An isolated heart validation study. J. Am.
Coll. Cardiol., 25:746–752.
Analysis of an Electrocardiographic Multilead System by Means of Artificial Neural Networks - Study of Repolarization During Premature