An Overset Mesh Approach for Valve Closure: An LVAD Application

Mohammed G. Al-Azawy, A. Turan, A. Revell

2016

Abstract

A comprehensive Computational Fluid Dynamics (CFD) simulation of transient, non-Newtonian, and turbulent blood flow through a positive displacement pump, left ventricular assist device (LVAD), is executed. Non-Newtonian blood flow is conducted to investigate the flow through a pulsatile pump LVAD by using common blood viscosity model: Carreau. The numerical results of non-Newtonian fluid with a turbulence model, Elliptic Blending Reynolds Stress Model (EB-RSM) are presented. The computational domain that has been selected is a pulsatile pump, which includes valves and a moving pusher plate. An overset mesh zero gap technique was employed to capture the cyclic motion of pusher plate and valves rotation to mimic the scenario of a natural heart. The use of this technique to rotate the valves and ensure full valve closure presented a good agreement results with the experimental data.

References

  1. Al-Azawy, M. G., Turan, A., and Revell, A. (2015). Investigating the Use of Turbulence Models for Flow Investigations in a Positive Displacement Ventricular Assist Device. 6th European Conference of the International Federation for Medical and Biological Engineering, 45:395-398.
  2. Al-Azawy, M. G., Turan, A., and Revell, A. (2016). Assessment of turbulence models for pulsatile flow inside a heart pump. Computer Methods in Biomechanics and Biomedical Engineering, 19(3):271-285. PMID: 25816074.
  3. Avrahami, I. (2003). The Effect of structure on the hemodynamics of artificial heart pumps. PhD thesis, Tel-Aviv University.
  4. Bluestein, D., Rambod, E., and Gharib, M. (2000). Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. Journal of biomechanical engineering, 122(2):125-134.
  5. Carreau, P. J. (1972). Rheological Equations from Molecular Network Theories. Journal of Rheology, 16(1):99- 127.
  6. Johnston, B. M., Johnston, P. R., Corney, S., and Kilpatrick, D. (2004). Non-Newtonian blood flow in human right coronary arteries: steady state simulations. Journal of biomechanics, 37(5):709-20.
  7. Kiris, C., Kwak, D., Rogers, S., and Chang, I. (1997). Computational approach for probing the flow through artificial heart devices. Journal of biomechanical engineering, 119(4):452-460.
  8. Kreider, J. W., Manning, K. B., Oley, L. a., Fontaine, A. a., and Deutsch, S. (2006). The 50cc Penn State left ventricular assist device: a parametric study of valve orientation flow dynamics. ASAIO journal (American Society for Artificial Internal Organs : 1992), 52(2):123-31.
  9. Medvitz, R. B. (2008). Development and Validation of a Computational Fluid Dynamic Methodology for Pulsatile Blood Pump Design and Prediction of Thrombus Potential. PhD thesis, Pennsylvania State University, University Park, PA.
  10. Medvitz, R. B., Kreider, J. W., Manning, K. B., Fontaine, A. A., Deutsch, S., and Paterson, E. G. (2007). Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices. ASAIO journal (American Society for Artificial Internal Organs : 1992), 53(2):122-131.
  11. Medvitz, R. B., Reddy, V., Deutsch, S., Manning, K. B., and Paterson, E. G. (2009). Validation of a CFD methodology for positive displacement LVAD analysis using PIV data. Journal of biomechanical engineering, 131(11):111009 1-9.
  12. Peskin, C. S. (2002). The immersed boundary method. Acta Numerica, 11:479-517.
  13. Pointwise (2011). Pointwise, Inc. Release 16.04R4 .
  14. StarCCM (2015). CD-Adapco User Guide, STAR-CCM+ Version 10.02 .
  15. Stijnen, J., de Hart, J., Bovendeerd, P., and van de Vosse, F. (2004). Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves. Journal of Fluids and Structures, 19(6):835- 850.
  16. Stijnen, J. M. A. (2004). Interaction between the mitral and aortic heart valve an experimental and computational study. PhD thesis, Eindhoven University.
  17. Yin, W., Alemu, Y., Affeld, K., Jesty, J., and Bluestein, D. (2004). Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Annals of biomedical engineering, 32(8):1058-1066.
Download


Paper Citation


in Harvard Style

Al-Azawy M., Turan A. and Revell A. (2016). An Overset Mesh Approach for Valve Closure: An LVAD Application . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 145-151. DOI: 10.5220/0005663901450151


in Bibtex Style

@conference{biodevices16,
author={Mohammed G. Al-Azawy and A. Turan and A. Revell},
title={An Overset Mesh Approach for Valve Closure: An LVAD Application},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2016)},
year={2016},
pages={145-151},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005663901450151},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2016)
TI - An Overset Mesh Approach for Valve Closure: An LVAD Application
SN - 978-989-758-170-0
AU - Al-Azawy M.
AU - Turan A.
AU - Revell A.
PY - 2016
SP - 145
EP - 151
DO - 10.5220/0005663901450151