An Overset Mesh Approach for Valve Closure: An LVAD Application
Mohammed G. Al-Azawy, A. Turan, A. Revell
2016
Abstract
A comprehensive Computational Fluid Dynamics (CFD) simulation of transient, non-Newtonian, and turbulent blood flow through a positive displacement pump, left ventricular assist device (LVAD), is executed. Non-Newtonian blood flow is conducted to investigate the flow through a pulsatile pump LVAD by using common blood viscosity model: Carreau. The numerical results of non-Newtonian fluid with a turbulence model, Elliptic Blending Reynolds Stress Model (EB-RSM) are presented. The computational domain that has been selected is a pulsatile pump, which includes valves and a moving pusher plate. An overset mesh zero gap technique was employed to capture the cyclic motion of pusher plate and valves rotation to mimic the scenario of a natural heart. The use of this technique to rotate the valves and ensure full valve closure presented a good agreement results with the experimental data.
References
- Al-Azawy, M. G., Turan, A., and Revell, A. (2015). Investigating the Use of Turbulence Models for Flow Investigations in a Positive Displacement Ventricular Assist Device. 6th European Conference of the International Federation for Medical and Biological Engineering, 45:395-398.
- Al-Azawy, M. G., Turan, A., and Revell, A. (2016). Assessment of turbulence models for pulsatile flow inside a heart pump. Computer Methods in Biomechanics and Biomedical Engineering, 19(3):271-285. PMID: 25816074.
- Avrahami, I. (2003). The Effect of structure on the hemodynamics of artificial heart pumps. PhD thesis, Tel-Aviv University.
- Bluestein, D., Rambod, E., and Gharib, M. (2000). Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. Journal of biomechanical engineering, 122(2):125-134.
- Carreau, P. J. (1972). Rheological Equations from Molecular Network Theories. Journal of Rheology, 16(1):99- 127.
- Johnston, B. M., Johnston, P. R., Corney, S., and Kilpatrick, D. (2004). Non-Newtonian blood flow in human right coronary arteries: steady state simulations. Journal of biomechanics, 37(5):709-20.
- Kiris, C., Kwak, D., Rogers, S., and Chang, I. (1997). Computational approach for probing the flow through artificial heart devices. Journal of biomechanical engineering, 119(4):452-460.
- Kreider, J. W., Manning, K. B., Oley, L. a., Fontaine, A. a., and Deutsch, S. (2006). The 50cc Penn State left ventricular assist device: a parametric study of valve orientation flow dynamics. ASAIO journal (American Society for Artificial Internal Organs : 1992), 52(2):123-31.
- Medvitz, R. B. (2008). Development and Validation of a Computational Fluid Dynamic Methodology for Pulsatile Blood Pump Design and Prediction of Thrombus Potential. PhD thesis, Pennsylvania State University, University Park, PA.
- Medvitz, R. B., Kreider, J. W., Manning, K. B., Fontaine, A. A., Deutsch, S., and Paterson, E. G. (2007). Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices. ASAIO journal (American Society for Artificial Internal Organs : 1992), 53(2):122-131.
- Medvitz, R. B., Reddy, V., Deutsch, S., Manning, K. B., and Paterson, E. G. (2009). Validation of a CFD methodology for positive displacement LVAD analysis using PIV data. Journal of biomechanical engineering, 131(11):111009 1-9.
- Peskin, C. S. (2002). The immersed boundary method. Acta Numerica, 11:479-517.
- Pointwise (2011). Pointwise, Inc. Release 16.04R4 .
- StarCCM (2015). CD-Adapco User Guide, STAR-CCM+ Version 10.02 .
- Stijnen, J., de Hart, J., Bovendeerd, P., and van de Vosse, F. (2004). Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves. Journal of Fluids and Structures, 19(6):835- 850.
- Stijnen, J. M. A. (2004). Interaction between the mitral and aortic heart valve an experimental and computational study. PhD thesis, Eindhoven University.
- Yin, W., Alemu, Y., Affeld, K., Jesty, J., and Bluestein, D. (2004). Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Annals of biomedical engineering, 32(8):1058-1066.
Paper Citation
in Harvard Style
Al-Azawy M., Turan A. and Revell A. (2016). An Overset Mesh Approach for Valve Closure: An LVAD Application . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 145-151. DOI: 10.5220/0005663901450151
in Bibtex Style
@conference{biodevices16,
author={Mohammed G. Al-Azawy and A. Turan and A. Revell},
title={An Overset Mesh Approach for Valve Closure: An LVAD Application},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2016)},
year={2016},
pages={145-151},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005663901450151},
isbn={978-989-758-170-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2016)
TI - An Overset Mesh Approach for Valve Closure: An LVAD Application
SN - 978-989-758-170-0
AU - Al-Azawy M.
AU - Turan A.
AU - Revell A.
PY - 2016
SP - 145
EP - 151
DO - 10.5220/0005663901450151