Proceedings of IEEE International Conference on In-
strumentation and Measurement Technology, pages
975–978. IEEE.
Jorna, P. G. (1992). Spectral analysis of heart rate and psy-
chological state: a review of its validity as a workload
index. Biological psychology, 34(2-3):237–257.
Karthikeyan, P., Murugappan, M., and Yaacob, S. (2013).
Detection of human stress using short-term ECG and
HRV signals. Journal of Mechanics in Medicine and
Biology, 13(02):1350038.
Keogh, E. (2010). Nearest neighbor. In Sammut, C. and
Webb, G., editors, Encyclopedia of Machine Learn-
ing, pages 714–715. Springer US.
Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E.,
Malliani, A., Moss, A. J., and Schwartz, P. J. (1996).
Heart rate variability. European Heart Journal,
17(3):354–381.
MATLAB (2015). Version 8.5.0 (R2015a). The MathWorks
Inc., Natick, Massachusetts.
MIO Alpha (2013). Heart rate watch. Physical Enterprises
Inc. (Mio Global), Canada, Vancouver.
Nexus 10 (2012). GT-P8110. Google Inc.; Samsung Elec-
tronics.
Polar H6 (2012). Model: X9. Polar Electro Oy, Finland,
Kempele.
Quadrianto, N., Kersting, K., and Xu, Z. (2010). Gaus-
sian process. In Sammut, C. and Webb, G., editors,
Encyclopedia of Machine Learning, pages 428–439.
Springer US.
QuickAmp (2015). Biofeedbacksystem. Brain Products
GmbH, Gilching, Germany.
Rasmussen, C. E. and Nickisch, H. (2010). Gaussian pro-
cesses for machine learning (GPML) toolbox. Journal
of Machine Learning Research, 11:3011–3015.
Rouse, W., Edwards, S., and Hammer, J. M. (1993). Model-
ing the dynamics of mental workload and human per-
formance in complex systems. IEEE Transactions on
Systems, Man, and Cybernetics, 23(6):1662–1671.
Singh, D., Vinod, K., and Saxena, S. (2004). Sampling
frequency of the RR interval time series for spectral
analysis of heart rate variability. Journal of medical
engineering & technology, 28(6):263–272.
Stroop, J. R. (1935). Studies of interference in serial ver-
bal reactions. Journal of Experimental Psychology,
18(6):643–662.
Sun, F.-T., Kuo, C., Cheng, H.-T., Buthpitiya, S., Collins,
P., and Griss, M. (2012). Activity-aware mental stress
detection using physiological sensors. In Gris, M. and
Yang, G., editors, Mobile Computing, Applications,
and Services, volume 76, pages 211–230. Springer
Berlin Heidelberg.
Tarvainen, M., Ranta-aho, P., and Karjalainen, P. (2002).
An advanced detrending method with application to
HRV analysis. IEEE Transactions on Biomedical En-
gineering, 49(2):172–175.
Wallhoff, F., Ablassmeier, M., Bannat, A., Buchta, S.,
Rauschert, A., Rigoll, G., and Wiesbeck, M. (2007).
Adaptive human-machine interfaces in cognitive pro-
duction environments. In Proceedings of IEEE Inter-
national Conference on Multimedia and Expo, pages
2246–2249.
Webb, G. (2010). Na
¨
ıve bayes. In Sammut, C. and Webb,
G., editors, Encyclopedia of Machine Learning, pages
713–714. Springer US.
Wijsman, J., Grundlehner, B., Liu, H., Hermens, H., and
Penders, J. (2011). Towards mental stress detection
using wearable physiological sensors. In Proceedings
of IEEE Engineering in Medicine and Biology Society,
pages 1798–1801.
Witten, I. H. and Frank, E. (2005). Data Mining: Practi-
cal Machine Learning Tools and Techniques. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
second edition.
Young, M. S. and Stanton, N. A. (2002). Attention and au-
tomation: New perspectives on mental underload and
performance. Theoretical Issues in Ergonomics Sci-
ence, 3(2):178–194.
APPENDIX
Table 5: Selected methods used for feature calculation.
categorie function definition
time mean µ =
1
n
∑
n
i=1
x
i
standard
deviation
σ =
q
1
n−1
∑
n
i=1
(x
i
−µ)
2
statistical skew
1
/n
∑
n
i=1
(x
i
−µ)
3
kurtosis
1
/n
∑
n
i=1
(x
i
−µ)
4
heart rate
variability
NN50
∑
n−1
i=1
(x
i
−x
i+1
> .05)
RMSSD
q
1
/n
∑
n
i=1
(x
i
−x
i+1
)
2
SDSD σ((x
1
−x
2
)... (x
n−1
−x
n
))
SD1
√
.5 ·SDSD
2
SD2
p
(2 ·SDSD
2
) −(.5 ·σ
2
(x))
SD12
SD1
/SD2
(spectral) VLF energy 0.00 to 0.04 Hz
LF energy 0.04 to 0.15 Hz
HF energy 0.15 to 0.40 Hz
nLF normalized energy (
LF
/LF+HF )
nHF normalized energy (
HF
/LF+HF )
LF/HF
LF
/HF
geometric
(peak)
count number of peaks
prominence distance between to successive
peaks
width distance between the two mini-
mums surrounding a peak
area integral between the two mini-
mums surrounding a peak
Fine-Grained Prediction of Cognitive Workload in a Modern Working Environment by Utilizing Short-Term Physiological Parameters
51