Multiobjective Bacterial Foraging Optimization using Archive Strategy

Cuicui Yang, Junzhong Ji

2016

Abstract

Multiobjective optimization problems widely exist in engineering application and science research. This paper presents an archive bacterial foraging optimizer to deal with multiobjective optimization problems. Under the concept of Pareto dominance, the proposed algorithm uses chemotaxis, conjugation, reproduction and elimination-and-dispersal mechanisms to approximate to the true Pareto fronts in multiobjective optimization problems. In the optimization process, the proposed algorithm incorporates an external archive to save the nondominated solutions previously found and utilizes the crowding distance to maintain the diversity of the obtained nondominated solutions. The proposed algorithm is compared with two state-of-the-art algorithms on four standard test problems. The experimental results indicate that our approach is a promising algorithm to deal with multiobjective optimization problems.

References

  1. A Balassubramaniam, Memeber, IEEE, P Lio (2013). Multi-hop conjugation based bacteria nanonetworks. In IEEE Trans. on Nanobiosci., volume 12, pages 47- 59.
  2. Agrawal V, Sharma H, Bansal J C (2011). Bacterial foraging optimization: A survey. In SocProS'2011, Proceedings of the International Conference on Soft Computing for Problem Solving, pages 227-242, India.
  3. C Perales-Graván, R Lahoz-Beltra (2008). An am radio receiver designed with a genetic algorithm algorithm based on a bacterial conjugation genetic operator. In IEEE Trans. Evol. Comput., volume 12, pages 129- 142.
  4. Coello C A C, Pulido G T, Lechuga M S (2004). Handling multiple objectives with particle swarm optimization. In IEEE Transactions on Evolutionary Computation, volume 8, pages 256-279.
  5. Coello Coello CA, Van Veldhuizen DA, Lamont GB (2007). Evolutionary Algorithms for Solving Multi-Objective Problems. New York, springer-verlag edition.
  6. Corne D W, Jerram N R, Knowles J D, et al (2001). PESAII: Region-based selection in evolutionary multiobjective optimization. In GECCO'2001, Proceedings of the Genetic and Evolutionary Computation Conference, pages 283-290.
  7. Deb (2001). Multi-objective Optimization using Evoulutionary Algorithms. Chichester, john wiley & sons edition.
  8. Deb K, Pratap A, Agarwal S, et al (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. In IEEE Transactions on Evolutionary Computation, volume 6, pages 182-197.
  9. E Zitzler, M Laumanns, L Thiele (2002). SPEA2: Improving the strength pareto evolutionary algorithm. In Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, pages 95-100, Berlin.
  10. Guzmán M A, Delgado A, De Carvalho J (2010). A novel multiobjective optimization algorithm based on bacterial chemotaxis. In Engineering Applications of Artificial Intelligence, volume 23.
  11. K.M. Passino (2002). Biomimicry of bacterial foraging for distributed optimization and control. In Control Systems, volume 22, pages 52-67.
  12. Niu B, Wang H, Tan L, et al (2012). Multi-objective optimization using bfo algorithm. In Bio-Inspired Computing and Applications, pages 582-587.
  13. Niu B, Wang H, Wang J, et al (2013). Multi-objective bacterial foraging optimization. In Neurocomputing, volume 116, pages 336-345.
  14. Panigrahi B K, Pandi V R, Das S, et al (2010). Multiobjective fuzzy dominance based bacterial foraging algorithm to solve economic emission dispatch problem. In Energy, volume 35, pages 227-242.
  15. Parks G T, Miller I (1998). Selective breeding in a multiobjective genetic algorithm. In Parallel Problem Solving From NaturelPPSN V, pages 250-259.
  16. S Dasgipta, S Das, A Abraham and A Biswas (2009). Adaptive computational chemotaxis in bacterial foraging optimiztion: An analysis. In IEEE Transactions on Evolutionary Computation, volume 13, pages 919- 941.
  17. Schott J R (1995). Fault tolerant design using single and multicriteria genetic algorithm optimization. In MS Thesis, Massachusetts institute of Technology, Cambridge.
  18. Tripathi P K, Bandyopadhyay S, Pal S K (2007). Multiobjective particle swarm optimization with time variant inertia and acceleration coefficients. In Information Sciences, volume 177, pages 5033-5049.
  19. Van Veldhuizen D A, Lamont G B (1998). Multiobjective evolutionary algorithm research: A history and analysis. In Technical Report TR-98-03, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Ohio.
  20. X Li (2003). A non-dominated sorting particle swarm optimizer for multiobjective optimization. In GECCO'2003, Proceedings of Genetic and Evolutionary Computation, pages 37-48.
  21. Zitzler E, Deb K, Thiele L (2000). Comparison of multiobjective evolutionary algorithms: Empirical results. In Evolutionary computation, volume 8, pages 173-195.
Download


Paper Citation


in Harvard Style

Yang C. and Ji J. (2016). Multiobjective Bacterial Foraging Optimization using Archive Strategy . In Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-173-1, pages 185-192. DOI: 10.5220/0005668601850192


in Bibtex Style

@conference{icpram16,
author={Cuicui Yang and Junzhong Ji},
title={Multiobjective Bacterial Foraging Optimization using Archive Strategy},
booktitle={Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2016},
pages={185-192},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005668601850192},
isbn={978-989-758-173-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Multiobjective Bacterial Foraging Optimization using Archive Strategy
SN - 978-989-758-173-1
AU - Yang C.
AU - Ji J.
PY - 2016
SP - 185
EP - 192
DO - 10.5220/0005668601850192