REFERENCES
Akinci, G., Akinci, N., Oswald, E., and Teschner, M.
(2013a). Adaptive surface reconstruction for sph us-
ing 3-level uniform grids.
Akinci, M., Julian, I., Gizem, B., and Teschner, M. (2011).
Animation of air bubbles with sph.
Akinci, N., Akinci, G., and Teschner, M. (2013b). Versa-
tile surface tension and adhesion for sph fluids. ACM
Transactions on Graphics, 32.6:182.
Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., and
Teschner, M. (2012). Versatile rigid-fluid coupling for
incompressible sph. ACM Transactions on Graphics
(TOG), 31(4):62.
Altomare, C., Crespo, A. J., Domnguez, J. M., Gmez-
Gesteira, M., Suzuki, T., and Verwaest, T. (2015).
Applicability of smoothed particle hydrodynamics for
estimation of sea wave impact on coastal structures.
Coastal Engineering, 96:1–12.
Becker, M., Ihmsen, M., and Teschner, M. (2009). Coro-
tated sph for deformable solids. NPH, pages 27–34.
Chen, Z., Zong, Z., Liu, M. B., Zou, L., Li, H. T., and
Shu, C. (2015). An sph model for multiphase flows
with complex interfaces and large density differences.
Journal of Computational Physics, pages 169–188.
Cornelis, J., Ihmsen, M., Peer, A., and Teschner, M. (2014).
Iisph-flip for incompressible fluids. Computer Graph-
ics Forum, 33(2).
Cummins, S. J. and Rudman, M. (1999). An sph projection
method.
Du, S. and Kanai, T. (2014). Gpu-based adaptive surface
reconstruction for real-time sph fluids.
Fraedrich, R., Auer, S., and Westermann, R. (2010). Effi-
cient high-quality volume rendering of sph data. Visu-
alization and Computer Graphics, 16.6:1533–1540.
Gingold, R. A. and Monaghan, J. J. (1977). Smoothed par-
ticle hydrodynamics: theory and application to non-
spherical stars. Monthly notices of the royal astro-
nomical society, 181.3s:375–389.
Goswami, P., Schlegel, P., Solenthaler, B., and Pajarola,
R. (2010). nteractive sph simulation and rendering
on the gpu. Proceedings of the 2010 ACM SIG-
GRAPH/Eurographics Symposium on Computer An-
imation.
Gotoh, H., Khayyer, A., Ikari, H., Arikawa, T., and Shi-
mosako, K. (2014). On enhancement of incompress-
ible sph method for simulation of violent sloshing
flows. Applied Ocean Research, 46:104–115.
Harada, T., Koshizuka, S., and Kawaguchi, Y. (2007).
Sliced data structure for particle-based simulations on
gpus. Proceedings of the 5th international conference
on Computer graphics and interactive techniques in
Australia and Southeast Asia.
He, X., Liu, N., Li, S., Wang, H., and Wang, G. (2012).
Local poisson sph for viscous incompressible fluids.
Computer Graphics Forum, 31(6):1948–1958.
He, X., Wang, H., Zhang, F., Wang, H., Wang, G., and
Zhou, K. (2014). Robust simulation of sparsely sam-
pled thin features in sph-based free surface flows.
ACM Transactions on Graphics (TOG), 34.
H
´
erault, A., Bilotta, G., and Dalrymple, R. A. (2010). Sph
on gpu with cuda. Journal of Hydraulic Research,
48.S1:74–79.
Huang, C., Zhu, J., Sun, H., and Wu, E. (2015). Parallel-
optimizing sph fluid simulation for realistic vr envi-
ronments. Computer Animation and Virtual Worlds,
26(1):43–54.
Ihmsen, M., Akinci, N., Becker, M., and Teschner, M.
(2011). A parallel sph implementation on multi-core
cpus. Computer Graphics Forum, 30:99–112.
Ihmsen, M., Akinci, N., Gissler, M., and Teschner, M.
(2010). Boundary handling and adaptive time-
stepping for pcisph. Workshop on virtual reality in-
teraction and physical simulation VRIPHYS.
Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., and
Teschner, M. (2014). Sph fluids in computer graphics.
Eurographics - State of the Art Reports.
Kelager, M. (2006). Lagrangian fluid dynamics using
smoothed particle hydrodynamics. University of
Copenhagen. Denmark.
Kim, S. and Park, J. (2014). A sph-based dissolution behav-
ior model for real-time fluid-solid interaction. SIG-
GRAPH Asia 2014 Posters.
Lee, E.-S., Moulinec, C., Xu, R., Violeau, D., Laurence, D.,
and Stansby, P. (2008). Comparisons of weakly com-
pressible and truly incompressible algorithms for the
sph mesh free particle method. Journal of computa-
tional physics, 227:8417–8436.
Liu, M. B., Liu, G. R., and Lam, K. Y. (2003). Constructing
smoothing functions in smoothed particle hydrody-
namics with applications. Journal of Computational
and applied Mathematics, 155.2:263–284.
Lucy, L. B. (1977). A numerical approach to the test-
ing of the fission hypothesis. Astronomical Journal,
82:1013–1024.
Monaghan, J, J. and Kocharyan, A. (1995). Sph simulation
of multi-phase flow. Computer Physics Communica-
tions, 87:225–235.
Monaghan, J. J. (1992). Smoothed particle hydrodynam-
ics. Annual review of astronomy and astrophysics,
30:543–574.
Monaghan, J. J. (2005). Smoothed particle hydrodynamics.
Reports on progress in physics, 68.8:1703–1759.
M
¨
uller, M., Charypar, D., and Gross, M. (2003).
Particle-based fluid simulation for interactive ap-
plications. Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics symposium on Computer ani-
mation.
M
¨
uller, M., Schirm, S., Teschner, M., Heielberger, B.,
and Gross, M. (2004). Interaction of fluids with de-
formable solids. Computer Animation and Virtual
Worlds 15, no 3-4:159–171.
M
¨
uller, M., Solenthaler, B., Keiser, R., and Gross, M.
(2005). Particle-based fluid-fluid interaction. Pro-
ceedings of the 2005 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 237–244.
Napoli, E., Marchis, M. D., and Vitanza, E. (2015).
Panormus-sph. a new smoothed particle hydrodynam-
ics solver for incompressible flows. Computers and
Fluids, 106:185–195.
GRAPP 2016 - International Conference on Computer Graphics Theory and Applications
224