how the parallel algorithm could be distributed over
more cores by using other kinds of interest point de-
tectors and feature descriptors than the ones used in
the experiments, such as SURF (Bay et al., 2008) and
SIFT (Lowe, 2004).
REFERENCES
Bay, H., Ess, A., Tuytelaars, T., and Gool, L. V. (2008).
Speeded-up robust features (surf). Comput. Vis. Image
Underst., 110(3):346–359.
Brown, M. and Lowe, D. G. (2007). Automatic panoramic
image stitching using invariant features. International
Journal of Computer Vision, 74(1):59–73.
Enqvist, O. and Kahl, F. (2008). Robust optimal pose esti-
mation. In ECCV.
Fijany, A. and Diotalevi, F. (2012). A cooperative search
algorithm for highly parallel implementation of ransac
for model estimation on tilera mimd architecture. In
Aerospace Conference, 2012 IEEE, pages 1–14.
Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: A paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Communications of the ACM, 24:381–395.
Friedman, J. H., Bentley, J. L., and Finkel, R. A. (1977).
An algorithm for finding best matches in logarithmic
expected time. ACM Trans. Math. Softw., 3(3):209–
226.
Fukunage, K. and Narendra, P. M. (1975). A branch and
bound algorithm for computing k-nearest neighbors.
IEEE Trans. Comput., 24(7):750–753.
Gauglitz, S., H
¨
ollerer, T., and Turk, M. (2011). Evaluation
of interest point detectors and feature descriptors for
visual tracking. Int. J. Comput. Vision, 94(3):335–360.
Harris, C. and Stephens, M. (1988). A combined corner
and edge detection. In Alvey Vision Conference, pages
147–151.
Hast, A. (2014). Robust and invariant phase based local fea-
ture matching. In ICPR 2014, pages 809–814. Poster
with Paper.
Hast, A. (2015). Interest point detection based on the ex-
tended structure tensor with a scale space parameter.
In VISAPP, pages 1–8. Short Paper.
Hast, A. and Marchetti, A. (2013). Rotation invariant fea-
ture matching - based on gaussian filtered log polar
transform and phase correlation. In ISPA 2013, pages
100–105.
Hast, A. and Marchetti, A. (2014). Invariant interest point
detection based on variations of the spinor tensor. In
WSCG 2014, pages 49–56. Short Paper.
Hast, A., Nysj
¨
o, J., and Marchetti, A. (2013). Optimal
ransac - towards a repeatable algorithm for finding the
optimal set. In WSCG, pages 21–30.
Hidalgo-Paniagua, A., Vega-Rodrguez, M., Pavn, N., and
Ferruz, J. (2014). A comparative study of parallel
ransac implementations in 3d space. International
Journal of Parallel Programming, pages 1–18.
Iser, R., Kubus, D., and Wahl, F. M. (2009). An ef-
ficient parallel approach to random sample match-
ing (pransam). In Proceedings of the 2009 IEEE
International Conference on Robotics and Automa-
tion, ICRA’09, pages 655–662, Piscataway, NJ, USA.
IEEE Press.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International Journal of Com-
puter Vision, 60(2):91–110.
M. Zuliani, C. K. and Manjunath, B. (2005). The multi-
ransac algorithm and its application to detect planar
homographies. In The International Conference on
Image Processing (ICIP), volume 3, pages 153–156.
Moravec, H. P. (1980). Obstacle avoidance and navi-
gation in the real world by a seeing robot rover.
PhD thesis, Stanford University, Stanford, CA, USA.
AAI8024717.
Muja, M. and Lowe, D. G. (2009). Fast approximate near-
est neighbors with automatic algorithm configuration.
In In VISAPP International Conference on Computer
Vision Theory and Applications, pages 331–340.
Noble, J. A. (1989). Descriptions of image surfaces. PhD
thesis, Oxford University, St Hugh’s College, Oxford,
GB. Ph. D. : Engineering sci. : April.
Obdrz
´
alek, S. and Matas, J. (2006). Object recognition us-
ing local affine frames on maximally stable extremal
regions. In Ponce, J., Hebert, M., Schmid, C., and
Zisserman, A., editors, Toward Category-Level Object
Recognition, volume 4170 of Lecture Notes in Com-
puter Science, pages 83–104. Springer.
Rodehorst, V. and Hellwich, O. (2006). Genetic algorithm
sample consensus (gasac) - a parallel strategy for ro-
bust parameter estimation. In IEEE Computer Society
Conference on Computer Vision and Pattern Recogni-
tion Workshop (CVPRW), pages 1–8.
Smith, S. M. and Brady, J. M. (1997). Susan - a new ap-
proach to low level image processing. Int. J. Comput.
Vision, 23(1):45–78.
Szeliski, R. (2006). Image alignment and stitching: a tuto-
rial. Found. Trends. Comput. Graph. Vis., 2(1):1–104.
Vajda, A. (2011). Programming Many-Core Chips.
Springer.
Zitova, B. and Flusser, J. (2003). Image registration meth-
ods: a survey. Image and Vision Computing, 21:977–
1000.
VISAPP 2016 - International Conference on Computer Vision Theory and Applications
106