pair which supplies the best homography by RHE are
usually more accurate than the results of all the other
methods. It is important to note that if many point
correspondences (hundreds of points) are given from
the observed plane, the original point-based homog-
raphy estimation methods give nearly the same result
as the proposed ones.
ACKNOWLEDGEMENTS
The research was partially supported by the Hungar-
ian Scientific Research Fund (OTKA No. 106374).
REFERENCES
Agarwal, A., Jawahar, C., and Narayanan, P. (2005). A Sur-
vey of Planar Homography Estimation Techniques.
Technical report, IIT-Hyderabad.
Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless,
B., Seitz, S. M., and Szeliski, R. (2011). Building
rome in a day. Commun. ACM, 54(10):105–112.
B., D. (1934). Sur la sphere vide. Izvestia Akademii
Nauk SSSR, Otdelenie Matematicheskikh i Estestven-
nykh Nauk, 7:793–800.
Barath, D., Molnar, J., and Hajder, L. (2015). Optimal Sur-
face Normal from Affine Transformation. In VISAPP
2015, pages 305–316.
Bj
¨
orck,
˚
A. (1996). Numerical Methods for Least Squares
Problems. Siam.
B
´
odis-Szomor
´
u, A., Riemenschneider, H., and Gool, L. V.
(2014). Fast, approximate piecewise-planar modeling
based on sparse structure-from-motion and superpix-
els. In IEEE Conference on Computer Vision and Pat-
tern Recognition.
Faugeras, O. and Lustman, F. (1988). Motion and struc-
ture from motion in a piecewise planar environment.
Technical Report RR-0856, INRIA.
Faugeras, O. D. and Papadopoulo, T. (1998). A Nonlin-
ear Method for Estimating the Projective Geometry of
Three Views. In ICCV, pages 477–484.
Fischler, M. and Bolles, R. (1981). RANdom SAmpling
Consensus: a paradigm for model fitting with appli-
cation to image analysis and automated cartography.
Commun. Assoc. Comp. Mach., 24:358–367.
Furukawa, Y. and Ponce, J. (2010). Accurate, dense, and
robust multi-view stereopsis. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 32(8):1362–1376.
Habbecke, M. and Kobbelt, L. (2006). Iterative multi-view
plane fitting. In Proceeding of Vision, Modelling, and
Visualization, pages 73–80.
Hartley, R. I. and Sturm, P. (1997). Triangulation. Computer
Vision and Image Understanding: CVIU, 68(2):146–
157.
Hartley, R. I. and Zisserman, A. (2003). Multiple View Ge-
ometry in Computer Vision. Cambridge University
Press.
He, L. (2012). Deeper Understanding on Solution Ambigu-
ity in Estimating 3D Motion Parameters by Homogra-
phy Decomposition and its Improvement. PhD thesis,
University of Fukui.
Kanatani, K. (1998). Optimal homography computation
with a reliability measure. In Proceedings of IAPR
Workshop on Machine Vision Applications, MVA,
pages 426–429.
Kannala, J., Salo, M., and Heikkil, J. (2006). Algorithms for
computing a planar homography from conics in cor-
respondence. In Proceedings of the British Machine
Vision Conference.
Kruger, S. and Calway, A. (1998). Image registration using
multiresolution frequency domain correlation. In Pro-
ceedings of the British Machine Vision Conference.
Kumar, M. P., Goyal, S., Kuthirummal, S., Jawahar, C. V.,
and Narayanan, P. J. (2004). Discrete contours in mul-
tiple views: approximation and recognition. Image
and Vision Computing, 22(14):1229–1239.
Lee, D.-T. and Schachter, B. J. (1980). Two algorithms
for constructing a delaunay triangulation. Interna-
tional Journal of Computer & Information Sciences,
9(3):219–242.
Malis, E. and Vargas, M. (2007). Deeper understanding of
the homography decomposition for vision-based con-
trol. Technical Report RR-6303, INRIA.
Marquardt, D. (1963). An algorithm for least-squares esti-
mation of nonlinear parameters. SIAM J. Appl. Math.,
11:431–441.
Mikolajczyk, K. and Schmid, C. (2004). Scale & affine in-
variant interest point detectors. International journal
of computer vision, 60(1):63–86.
Moln
´
ar, J. and Chetverikov, D. (2014). Quadratic transfor-
mation for planar mapping of implicit surfaces. Jour-
nal of Mathematical Imaging and Vision, 48:176–184.
Moln
´
ar, J., Huang, R., and Kato, Z. (2014). 3d recon-
struction of planar surface patches: A direct solution.
ACCV Big Data in 3D Vision Workshop.
Morel, J.-M. and Yu, G. (2009). Asift: A new framework for
fully affine invariant image comparison. SIAM Jour-
nal on Imaging Sciences, 2(2):438–469.
Mudigonda, P. K., Kumar, P., Jawahar, M. C. V., and
Narayanan, P. J. (2004). Geometric structure compu-
tation from conics. In In ICVGIP, pages 9–14.
Murino, V., Castellani, U., Etrari, A., and Fusiello, A.
(2002). Registration of very time-distant aerial im-
ages. In Proceedings of the IEEE International Con-
ference on Image Processing (ICIP), volume III, pages
989–992. IEEE Signal Processing Society.
Musialski, P., Wonka, P., Aliaga, D. G., Wimmer, M., van
Gool, L., and Purgathofer, W. (2012). A survey of
urban reconstruction. In EUROGRAPHICS 2012 State
of the Art Reports, pages 1–28.
Pollefeys, M., Nist
´
er, D., Frahm, J. M., Akbarzadeh, A.,
Mordohai, P., Clipp, B., Engels, C., Gallup, D., Kim,
S. J., Merrell, P., Salmi, C., Sinha, S., Talton, B.,
Wang, L., Yang, Q., Stew
´
enius, H., Yang, R., Welch,
G., and Towles, H. (2008). Detailed real-time urban
3d reconstruction from video. Int. Journal Comput.
Vision, 78(2-3):143–167.
Novel Ways to Estimate Homography from Local Affine Transformations
443