Silver nanoparticles can be formed on the surface
of PTR glasses by the thermal treatment in the
reducing atmosphere or by the laser ablation of the
surface of PTR glass. In the last case silver
nanoparticles are covered by the SiO
2
shell 3-5 nm
thick. Figure 13 shows the spectral position of the
plasmon resonance peaks for the silver nanoparticles
with (a) and without (b) dielectric shell on a PTR
glass surface in air and in water. In the first case the
plasmon resonance spectral shift is 6 nm, in the
second case – 13 nm. It is enough for the application
in the sensors for the environment refraction index
measurements.
3 CONCLUSIONS
We have demonstrated some examples of design and
fabrication of optical, photonic and plasmonic
devices based on new fluorine, chlorine and bromine
PTR glasses: holographic volume Bragg gratings for
diode lasers, optical amplifier, optical and plasmonic
waveguides, hollow structures, thermo- and
biosensors, phosphors for LEDs and down-converters
for solar cells.
ACKNOWLEDGEMENTS
This work has been supported by the Ministry of
Education and Science of Russian Federation (Project
No.RFMEFI58114X0006).
REFERENCES
Aseev, V.A., Nikonorov, N.V., 2008. Spectroluminescence
properties of photothermorefractive nanoglass-
ceramics doped with ytterbium and erbium ions.
Journal of Optical Technology, 75(10), p.676.
Dubrovin, V., Ignatiev, A., Nevedomskii, V., Nikonorov,
N., Sidorov, A. & Tsekhomskii, V., 2014. The
influence of synthesis conditions and ultraviolet
irradiation on the morphology and concentration of
silver nanocrystals in photothermo-refractive glasses.
Glass Technology-European Journal of Glass Science
and Technology Part A, 55(6), pp.191–195.
Dubrovin, V.D., Ignatiev, A.I., Nikonorov, N. V., Sidorov,
A.I., Shakhverdov, T.A. & Agafonova, D.S., 2014.
Luminescence of silver molecular clusters in photo-
thermo-refractive glasses. Optical Materials, 36(4),
pp.753–759.
Efimov, A.M., Ignatiev, A.I., Nikonorov, N. V. &
Postnikov, E.S., 2011. Quantitative UV-VIS
spectroscopic studies of photo-thermo-refractive
glasses. I. Intrinsic, bromine-related, and impurity-
related UV absorption in photo-thermo-refractive glass
matrices. Journal of Non-Crystalline Solids, 357(19-
20), pp.3500–3512.
Glebova, L., Lumeau, J. & Glebov, L.B., 2011. Photo-
thermo-refractive glass co-doped with Nd 3+ as a new
laser medium. Optical Materials, 33(12), pp.1970–
1974.
Glebova, L., Lumeau, J., Klimov, M., Zanotto, E.D. &
Glebov, L.B., 2008. Role of bromine on the thermal and
optical properties of photo-thermo-refractive glass.
Journal of Non-Crystalline Solids, 354(2-9), pp.456–
461.
Hofmann, P., Amezcua-correa, R., Antonio-lopez, E., Ott,
D., Segall, M., Divliansky, I., Lumeau, J., Glebova, L.,
Glebov, L., Peyghambarian, N., et al., 2013. Strong
Bragg gratings in highly photosensitive photo-thermo-
refractive-glass optical fiber. IEEE Photonics
Technology Letters, 25(1), pp.25–28.
Kösters, M., Hsieh, H.-T., Psaltis, D. & Buse, K., 2005.
Holography in commercially available photoetchable
glasses. Applied optics, 44(17), pp.3399–3402.
Nikonorov, N., Aseev, V. & Ignatiev, A., 2010. New
polyfunctional photo-thermo-refractive glasses for
photonics applications. In ODF’10. pp. 209–210.
Nordberg, M.E., Mochel, E.L., Garfinkel, H.M. & Olcott,
J.S., 1964. Strengthening by Ion Exchange. Journal of
the American Ceramic Society, 47(5), pp.215–219.
Razzaghi, A., Maleki, M. & Azizian-Kalandaragh, Y.,
2013. The influence of post-annealing treatment on the
wettability of Ag+/Na+ ion-exchanged soda-lime
glasses. Applied Surface Science, 270, pp.604–610.