Multi-Class Error-Diffusion with Blue-noise Property
Xiaoliang Xiong, Haoli Fan, Jie Feng, Zhihong Liu, Bingfeng Zhou
2016
Abstract
Existing researches on error-diffusion mainly focus on sampling over a single channel of input signal. But there are cases where multiple channels of signal need to be sampled simultaneously while keeping their blue-noise property for each individual channel as well as their superimposition. To solve this problem, we propose a novel discrete sampling algorithm called Multi-Class Error Diffusion (MCED). The algorithm couples multiple processes of error diffusion to maintain a sampling output with blue-noise distribution. The correlation among the classes are considered and a threshold displacement is introduced into each process of error-diffusion for solving the sampling conflicts. To minimize the destruction to the blue-noise property, an optimization method is used to find a set of optimal key threshold displacements. Experiments demonstrate that our MCED algorithm is able to generate satisfactory multi-class sampling output. Several application cases including color image halftoning and vectorization are also explored.
References
- Alliez, P., Meyer, M., and Desbrun, M. (2002). Interactive geometry remeshing. ACM Trans. Graph., 21:347- 354.
- Baqai, F. A., Lee, J.-H., Agar, A. U., and Allebach, J. P. (2005). Digital color halftoning. IEEE Signal Processing Magazine, 22:87-96.
- Bourguignon, D., Chaine, R., Cani, M.-P., and Drettakis, G. (2004). Relief: A Modeling by Drawing Tool. In Eurographics Workshop on Sketch-Based Interfaces and Modeling (SBM), pages 151-160, Grenoble, France. Eurographics, Eurographics Association.
- Chang, J., Alain, B., and Ostromoukhov, V. (2009). Structure-aware error diffusion. ACM Trans. Graph., 28:162:1-162:8.
- Damera-Venkata, N. and Evans, B. L. (2001). Design and analysis of vector color error diffusion halftoning systems. Image Processing, IEEE Transactions on, 10(10):1552-1565.
- Damera-Venkata, N., Evans, B. L., and Monga, V. (2003). Color error-diffusion halftoning what differentiates it from grayscale error diffusion? IEEE Signal Processing Magazine, 20:51-58.
- Floyd, R. W. and Steinberg, L. (1976). An Adaptive Algorithm for Spatial Greyscale. Proceedings of the Society for Information Display, 17(2):75-77.
- Gonzalez, R. C. and Woods, R. E. (2001). Digital Image Processing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition.
- Haneishi, H., Suzuki, T., Shimoyama, N., and Miyake, Y. (1996). Color digital halftoning taking colorimetric color reproduction into account. J. Electronic Imaging, 5(1):97-106.
- Kang, H. R. (1999). Digital Color Halftoning. Society of Photo-Optical Instrumentation Engineers (SPIE), Bellingham, WA, USA, 1st edition.
- Kim, S. Y., Maciejewski, R., Isenberg, T., Andrews, W. M., Chen, W., Sousa, M. C., and Ebert, D. S. (2009). Stippling by example. In NPAR09, pages 41-50. ACM.
- Knox, K. T. and Eschbach, R. (1993). Threshold modulation in error diffusion. J. Electronic Imaging, 2(3):185-192.
- Li, P. and Allebach, J. P. (2001). Tone-dependent error diffusion. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 4663, pages 310-321.
- Ostromoukhov, V. (2001). A simple and efficient errordiffusion algorithm. In SIGGRAPH01, pages 567- 572. ACM.
- Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in C: The Art of Scientific Computing . Cambridge University Press, New York, NY, USA, 2nd edition.
- Rodrlguez, J. B., Arce, G. R., and Lau, D. L. (2008). Blue-noise multitone dithering. IEEE Transactions on Image Processing, 17(8):1368-1382.
- Swaminarayan, S. and Prasad, L. (2006). Rapid automated polygonal image decomposition. In Applied Imagery and Pattern Recognition Workshop, 2006., pages 28- 28. IEEE.
- Ulichney, R. A. (1988). Dithering with blue noise. Proceedings of the IEEE, 76:56-79.
- Wei, L.-Y. (2010). Multi-class blue noise sampling. ACM Transactions on Graphics (TOG), 29(4):79.
- Wei, L.-y. (2012). Private communication.
- Weissbach, S. and Wyrowski, F. (1992). Error diffusion procedure: theory and applications in optical signal processing. Applied Optics, 31:2518-2534.
- Zhou, B. and Fang, X. (2003). Improving mid-tone quality of variable-coefficient error diffusion using threshold modulation. ACM Trans. Graph., 22(3):437-444.
- Algorithm 1: Multi-Class Error-Diffusion.
- 1: for each spatial position (x,y) do n
- 2: p0(x, y) ? ? pi(x, y) i=1
- 4: for each spatial position (x,y) do 5: // The first step Qi 6: for each class i := 0 to n do 7: ti(x, y) ? GetDisplacement(p0(x, y), pi(x, y))
Paper Citation
in Harvard Style
Xiong X., Fan H., Feng J., Liu Z. and Zhou B. (2016). Multi-Class Error-Diffusion with Blue-noise Property . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 28-38. DOI: 10.5220/0005677300260036
in Bibtex Style
@conference{grapp16,
author={Xiaoliang Xiong and Haoli Fan and Jie Feng and Zhihong Liu and Bingfeng Zhou},
title={Multi-Class Error-Diffusion with Blue-noise Property},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016)},
year={2016},
pages={28-38},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005677300260036},
isbn={978-989-758-175-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016)
TI - Multi-Class Error-Diffusion with Blue-noise Property
SN - 978-989-758-175-5
AU - Xiong X.
AU - Fan H.
AU - Feng J.
AU - Liu Z.
AU - Zhou B.
PY - 2016
SP - 28
EP - 38
DO - 10.5220/0005677300260036