Multi-Class Error-Diffusion with Blue-noise Property

Xiaoliang Xiong, Haoli Fan, Jie Feng, Zhihong Liu, Bingfeng Zhou

2016

Abstract

Existing researches on error-diffusion mainly focus on sampling over a single channel of input signal. But there are cases where multiple channels of signal need to be sampled simultaneously while keeping their blue-noise property for each individual channel as well as their superimposition. To solve this problem, we propose a novel discrete sampling algorithm called Multi-Class Error Diffusion (MCED). The algorithm couples multiple processes of error diffusion to maintain a sampling output with blue-noise distribution. The correlation among the classes are considered and a threshold displacement is introduced into each process of error-diffusion for solving the sampling conflicts. To minimize the destruction to the blue-noise property, an optimization method is used to find a set of optimal key threshold displacements. Experiments demonstrate that our MCED algorithm is able to generate satisfactory multi-class sampling output. Several application cases including color image halftoning and vectorization are also explored.

References

  1. Alliez, P., Meyer, M., and Desbrun, M. (2002). Interactive geometry remeshing. ACM Trans. Graph., 21:347- 354.
  2. Baqai, F. A., Lee, J.-H., Agar, A. U., and Allebach, J. P. (2005). Digital color halftoning. IEEE Signal Processing Magazine, 22:87-96.
  3. Bourguignon, D., Chaine, R., Cani, M.-P., and Drettakis, G. (2004). Relief: A Modeling by Drawing Tool. In Eurographics Workshop on Sketch-Based Interfaces and Modeling (SBM), pages 151-160, Grenoble, France. Eurographics, Eurographics Association.
  4. Chang, J., Alain, B., and Ostromoukhov, V. (2009). Structure-aware error diffusion. ACM Trans. Graph., 28:162:1-162:8.
  5. Damera-Venkata, N. and Evans, B. L. (2001). Design and analysis of vector color error diffusion halftoning systems. Image Processing, IEEE Transactions on, 10(10):1552-1565.
  6. Damera-Venkata, N., Evans, B. L., and Monga, V. (2003). Color error-diffusion halftoning what differentiates it from grayscale error diffusion? IEEE Signal Processing Magazine, 20:51-58.
  7. Floyd, R. W. and Steinberg, L. (1976). An Adaptive Algorithm for Spatial Greyscale. Proceedings of the Society for Information Display, 17(2):75-77.
  8. Gonzalez, R. C. and Woods, R. E. (2001). Digital Image Processing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition.
  9. Haneishi, H., Suzuki, T., Shimoyama, N., and Miyake, Y. (1996). Color digital halftoning taking colorimetric color reproduction into account. J. Electronic Imaging, 5(1):97-106.
  10. Kang, H. R. (1999). Digital Color Halftoning. Society of Photo-Optical Instrumentation Engineers (SPIE), Bellingham, WA, USA, 1st edition.
  11. Kim, S. Y., Maciejewski, R., Isenberg, T., Andrews, W. M., Chen, W., Sousa, M. C., and Ebert, D. S. (2009). Stippling by example. In NPAR09, pages 41-50. ACM.
  12. Knox, K. T. and Eschbach, R. (1993). Threshold modulation in error diffusion. J. Electronic Imaging, 2(3):185-192.
  13. Li, P. and Allebach, J. P. (2001). Tone-dependent error diffusion. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 4663, pages 310-321.
  14. Ostromoukhov, V. (2001). A simple and efficient errordiffusion algorithm. In SIGGRAPH01, pages 567- 572. ACM.
  15. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in C: The Art of Scientific Computing . Cambridge University Press, New York, NY, USA, 2nd edition.
  16. Rodrlguez, J. B., Arce, G. R., and Lau, D. L. (2008). Blue-noise multitone dithering. IEEE Transactions on Image Processing, 17(8):1368-1382.
  17. Swaminarayan, S. and Prasad, L. (2006). Rapid automated polygonal image decomposition. In Applied Imagery and Pattern Recognition Workshop, 2006., pages 28- 28. IEEE.
  18. Ulichney, R. A. (1988). Dithering with blue noise. Proceedings of the IEEE, 76:56-79.
  19. Wei, L.-Y. (2010). Multi-class blue noise sampling. ACM Transactions on Graphics (TOG), 29(4):79.
  20. Wei, L.-y. (2012). Private communication.
  21. Weissbach, S. and Wyrowski, F. (1992). Error diffusion procedure: theory and applications in optical signal processing. Applied Optics, 31:2518-2534.
  22. Zhou, B. and Fang, X. (2003). Improving mid-tone quality of variable-coefficient error diffusion using threshold modulation. ACM Trans. Graph., 22(3):437-444.
  23. Algorithm 1: Multi-Class Error-Diffusion.
  24. 1: for each spatial position (x,y) do n
  25. 2: p0(x, y) ? ? pi(x, y) i=1
  26. 4: for each spatial position (x,y) do 5: // The first step Qi 6: for each class i := 0 to n do 7: ti(x, y) ? GetDisplacement(p0(x, y), pi(x, y))
Download


Paper Citation


in Harvard Style

Xiong X., Fan H., Feng J., Liu Z. and Zhou B. (2016). Multi-Class Error-Diffusion with Blue-noise Property . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 28-38. DOI: 10.5220/0005677300260036


in Bibtex Style

@conference{grapp16,
author={Xiaoliang Xiong and Haoli Fan and Jie Feng and Zhihong Liu and Bingfeng Zhou},
title={Multi-Class Error-Diffusion with Blue-noise Property},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016)},
year={2016},
pages={28-38},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005677300260036},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016)
TI - Multi-Class Error-Diffusion with Blue-noise Property
SN - 978-989-758-175-5
AU - Xiong X.
AU - Fan H.
AU - Feng J.
AU - Liu Z.
AU - Zhou B.
PY - 2016
SP - 28
EP - 38
DO - 10.5220/0005677300260036