Dr. Guido Bologna for his helpful guidance in the
project. This work is supported by the Swiss Hasler
Foundation SmartWorld Program, grant Nr. 11083.
REFERENCES
Adelson, E. H. and Bergen, J. R. (1991). The plenoptic
function and the elements of early vision. Computa-
tional models of visual processing, 1(2):2–20.
Arthur, D. and Vassilvitskii, S. (2007). k-means++:
the advantages of careful seeding. In Proceed-
ings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2007, New Orleans,
Louisiana, USA, January 7-9, 2007, pages 1027–
1035.
Bolles, R. C., Baker, H. H., and Marimont, D. H. (1987).
Epipolar-plane image analysis: An approach to deter-
mining structure from motion. International Journal
of Computer Vision, 1(1):7–55.
Cho, D., Kim, S., and Tai, Y.-W. (2014). Consistent mat-
ting for light field images. In Computer Vision–ECCV
2014, pages 90–104. Springer.
Cloix, S., Weiss, V., Bologna, G., Pun, T., and Hasler, D.
(2014). Obstacle and planar object detection using
sparse 3d information for a smart walker. In VISAPP
(2)’14, pages 292–298.
Coates, A., Karpathy, A., and Ng, A. Y. (2012). Emer-
gence of object-selective features in unsupervised fea-
ture learning. In Pereira, F., Burges, C., Bottou, L.,
and Weinberger, K., editors, Advances in Neural In-
formation Processing Systems 25, pages 2681–2689.
Curran Associates, Inc.
Csurka, G., Dance, C. R., Fan, L., Willamowski, J., and
Bray, C. (2004). Visual categorization with bags of
keypoints. In In Workshop on Statistical Learning in
Computer Vision, ECCV, pages 1–22.
Everingham, M., Eslami, S., Van Gool, L., Williams, C.,
Winn, J., and Zisserman, A. (2015). The pascal vi-
sual object classes challenge: A retrospective. Inter-
national Journal of Computer Vision, 111(1):98–136.
Gavrila, D. M. and Munder, S. (2006). Multi-cue Pedestrian
Detection and Tracking from a Moving Vehicle. Inter-
national Journal of Computer Vision, 73(1):41–59.
Georgiev, T. G. and Lumsdaine, A. (2009). Resolution in
plenoptic cameras. In Computational Optical Sensing
and Imaging, page CTuB3. Optical Society of Amer-
ica.
Ghasemi, A., Afonso, N. J., and Vetterli, M. (2014). LCAV-
31: a dataset for light field object recognition. In Pro-
ceedings of the SPIE, volume 9020, San Francisco,
California, USA. International Society for Optics and
Photonics.
Ghasemi, A. and Vetterli, M. (2014). Scale-invariant repre-
sentation of light field images for object recognition
and tracking. In Proceedings of the SPIE, volume
9020 of Proceedings of SPIE, San Francisco, Califor-
nia, USA. International Society for Optics and Pho-
tonics.
Helmer, S. and Lowe, D. (2010). Using stereo for ob-
ject recognition. In Robotics and Automation (ICRA),
2010 IEEE International Conference on, pages 3121–
3127.
Joshi, N., Matusik, W., and Avidan, S. (2006). Natu-
ral video matting using camera arrays. ACM Trans.
Graph., 25(3):779–786.
Kim, C., Zimmer, H., Pritch, Y., Sorkine-Hornung, A., and
Gross, M. H. (2013). Scene reconstruction from high
spatio-angular resolution light fields. ACM Trans.
Graph., 32(4):73.
Levoy, M. (2011). The (old) stanford light fields archive.
http://graphics.stanford.edu/software/lightpack/lifs.html.
[Online, accessed 30-March-2015].
Ng, R. (2005). Fourier slice photography. In ACM Transac-
tions on Graphics (TOG), volume 24, pages 735–744.
ACM.
Perwass, C. and Wietzke, L. (2012). Single lens 3d-camera
with extended depth-of-field. In IS&T/SPIE Elec-
tronic Imaging, pages 829108–829108. International
Society for Optics and Photonics.
Wanner, S., Meister, S., and Goldluecke, B. (2013).
Datasets and benchmarks for densely sampled 4d light
fields. In Vision, Modelling and Visualization (VMV).
Wetzstein, G. Synthetic light field archive. http://web. me-
dia.mit.edu/gordonw/SyntheticLightFields/index.php.
[Online, accessed 30-March-2015].
Wilburn, B., Joshi, N., Vaish, V., Talvala, E.-V., Antunez,
E., Barth, A., Adams, A., Horowitz, M., and Levoy,
M. (2005). High performance imaging using large
camera arrays. ACM Trans. Graph., 24(3):765–776.
Zobel, M., Fritz, M., and Scholz, I. (2002). Object track-
ing and pose estimation using light-field object mod-
els. In Proceedings of the Vision, Modeling, and Vi-
sualization Conference 2002 (VMV 2002), Erlangen,
Germany, November 20-22, 2002, pages 371–378.
VISAPP 2016 - International Conference on Computer Vision Theory and Applications
344