Table 6: Performance Score of Automatic Weight Assigning of THIRD Configuration (AUC Score).
AUC Score of THIRD Configuration of Automatic Weight Assigning
S.NO Video Name Module 1 Module 2 Module 3 Module 4 Module 5 Module 6
1 Bus 0.6936 0.7098 0.7001 0.6916 0.7021 0.7088
2 City 0.7089 0.6850 0.6999 0.6848 0.6833 0.6686
3 Crew 0.6284 0.6408 0.6341 0.6318 0.6306 0.6353
4 Flower Garden 0.7042 0.7296 0.7271 0.7224 0.7247 0.7222
5 Foreman 0.7648 0.7685 0.7710 0.7745 0.7641 0.7558
6 Hall Monitor 0.3546 0.3629 0.3626 0.3560 0.3660 0.3717
7 Harbor 0.7702 0.7717 0.7604 0.7797 0.7802 0.7688
8 Mobile 0.5756 0.5996 0.5880 0.6086 0.5867 0.5996
9 Mother 0.7121 0.6977 0.6958 0.7003 0.6602 0.6801
10 Soccer 0.5448 0.5451 0.5453 0.5455 0.5453 0.5456
11 Stefan 0.8635 0.8659 0.8738 0.8556 0.8628 0.8780
12 Tampete 0.7232 0.7255 0.7254 0.7094 0.7133 0.7198
Table 7: Complete Weight assigning in automatic weight assigning configuration. Example of IST configuration.
S. No Achanta Context GBVS Phase Fourier Random Surround Wavelets
Module 1 0.8 0.5 0.5 0.5 0.5 0.5
Module 2 0.5 0.8 0.5 0.5 0.5 0.5
Module 3 0.5 0.5 0.8 0.5 0.5 0.5
Module 4 0.5 0.5 0.5 0.8 0.5 0.5
Module 5 0.5 0.5 0.5 0.5 0.8 0.5
Module 6 0.5 0.5 0.5 0.5 0.5 0.8
REFERENCES
Ali Borji, Member, IEEE, Dicky N. Sihite, and Laurent Itti,
Member, IEEE, 2013(a). Quantitative Analysis of
Human-Model Agreement in Visual Saliency Modeling:
A Comparative Study, In IEEE Trans. Image
Processing, VOL. 22, NO. 1.2013.
Ali Borji, Hamed R. Tavakoli, Dicky N. Sihite, Laurent Itti,
2013(b). Analysis of scores, datasets, and models in
visual saliency prediction, In ICCV 2013.
Ali Borji, Member, IEEE, and Laurent Itti, Member, IEEE,
2010. State-of-the-art in Visual Attention Modeling, In
IEEE Trans. Pattern Anal. Mach. Intell, 2010.
C. Guo, Qi Ma and Liming Zhang, 2008.Spatio-temporal
Saliency detection using phase spectrum of quaternion
Fourier transforms. In CVPR, 2008.
C. Koch and S. Ullman, 1985. Shifts in selective visual
attention: towards the underlying neural circuitry.
Human Neurobiology, 4:219–227, 1985.
C. M. Privitera and Lawrence W. Stark, 2000. Algorithms
for defining visual regions-of-interest: Comparison
with eye fixations. IEEE Trans. Pattern Anal. Mach.
Intell., 22:970–982, Sep’ 2000.
D. Parkhurst, Klinton Law, and Ernst Niebur, 2002.
Modeling the role of salience in the allocation of overt
visual attention. Vision Research, 42(1):107 – 123,
2002.
H. Hadizadeh, M. J. Enriquez, and I. V. Bajić, 2012.Eye-
tracking database for a set of standard video
sequences," IEEE Trans. Image Processing, vol. 21, no.
2, pp. 898-903, Feb. 2012.
J. Harel, C. Koch, and P. Perona 2007. Graph based visual
saliency, In Advances in Neural Information
Processing Systems. MIT Press.
J. M. Henderson, J. R. Brockmole, M. S. Castelhano, and
M. Mack, 2007. Visual saliency does not account for
eye movements during visual search in real-world
scenes. Eye Movement Research: Insights into Mind
and Brain, 2007.
L. Elazary and L. Itti, 2008. Interesting objects are visually
salient. J. Vis., 8(3):1–15, 3 2008.
L. Itti, 2005. Quantifying the contribution of low-level
saliency to human eye movements in dynamic scenes.
Visual Cognition, 12:1093–1123, 2005.
Nevrez Imamoglu, Weisi Lin, and Yuming Fang, 2013. A
Saliency Detection Model Using Low-Level Features
Based on Wavelet Transform. IEEE Trans. Multimedia
15(1): 96-105 (January 2013).
N. Bruce and J. Tsotsos, 2006. Saliency based on
information maximization. In Y. Weiss, B. Sch¨olkopf,
and J. Platt, editors, Advances in Neural Information