Duality in Some Intuitionistic Paraconsistent Logics

Norihiro Kamide

2016

Abstract

Duality in constructive (or intuitionistic) logics is an important basic property since the dual counterpart of a given constructive logic can obtain a refutation or falsification of the information or knowledge which is described by the given logic. In this paper, duality in some intuitinistic paraconsistent logics is investigated. A constructive connexive logic (connexive logic for short) and Nelson’s paraconsistent four-valued logic are addressed as an example of such intuitionistic paraconsistent logics. A new logic called dual connexive logic (dCN), which is the dual counterpart of the connexive logic (CN), is introduced as a Gentzen-type sequent calculus. Some theorems for embedding dCN into CN and vice versa, which represent the duality between them, are shown. Similar embedding results cannot be shown for Nelson’s paraconsistent four-valued logic. But, similar embedding results can be shown for an extended Nelson logic with co-implication.

References

  1. Almukdad, A. and Nelson, D. (1984). Constructible falsity and inexact predicates. Journal of Symbolic Logic, 49:231-233.
  2. Angell, R. (1962). A propositional logics with subjunctive conditionals. Journal of Symbolic Logic, 27:327-343.
  3. Belnap, N. (1977). A useful four-valued logic in: J.M. Dunn and G. Epstein (eds.), Modern Uses of MultipleValued Logic, pp. 5-37. Reidel, Dordrecht.
  4. Czermak, J. (1977). A remark on gentzen's calculus of sequents. Notre Dame Journal of Formal Logic, 18:471- 474.
  5. Dunn, J. (1976). Intuitive semantics for first-degree entailment and 'coupled trees'. Philosophical Studies, 29 (3):149-168.
  6. Goodman, N. (1981). The logic of contradiction. Z. Math. Logik Grundlagen Math., 27:119-126.
  7. Goré, R. (2000). Dual intuitionistic logic revisited. Lecture Notes in Artificial Intelligence (Proceedings of the International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2000), 1847:252-267.
  8. Gurevich, Y. (1977). Intuitionistic logic with strong negation. Studia Logica, 36:49-59.
  9. Kamide, N. (2014). Inconsistency-tolerant multi-agent calculus. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 22 (6):815-830.
  10. Kamide, N. (2015a). Inconsistency and sequentiality in ltl. Proceedings of the 7th International Conference on Agents and Artificial Intelligence (ICAART 2015), 2:46-54.
  11. Kamide, N. (2015b). Inconsistency-tolerant temporal reasoning with hierarchical information. Information Sciences, 320:140-155.
  12. Kamide, N. and Koizumi, D. (2015). Combining paraconsistency and probability in ctl. Proceedings of the 7th International Conference on Agents and Artificial Intelligence (ICAART 2015), 2:285-293.
  13. Kamide, N. and Wansing, H. (2011a). Connexive modal logic based on positive s4. in: Logic without Frontiers: Festschrift for Walter Alexandre Carnielli on the occasion of his 60th Birthday (Jean-Yves Béziau and Marcelo Esteban Coniglio, eds.), 17 of Tribute Series:389-410.
  14. Kamide, N. and Wansing, H. (2011b). A paraconsistent linear-time temporal logic. Fundamenta Informaticae, 106 (1):1-23.
  15. Kamide, N. and Wansing, H. (2012). Proof theory of nelson's paraconsistent logic: A uniform perspective. Theoretical Computer Science, 415:1-38.
  16. Kamide, N. and Wansing, H. (2015). Proof theory of N4- related paraconsistent logics, Studies in Logic 54. College Publications.
  17. McCall, S. (1966). Connexive implication. Journal of Symbolic Logic, 31:415-433.
  18. Nelson, D. (1949). Constructible falsity. Journal of Symbolic Logic, 14:16-26.
  19. Priest, G. (2002). Paraconsistent logic, Handbook of Philosophical Logic (Second Edition), Vol. 6, D. Gabbay and F. Guenthner (eds.). Kluwer Academic Publishers, Dordrecht, pp. 287-393.
  20. Rautenberg, W. (1979). Klassische und nicht-klassische Aussagenlogik. Vieweg, Braunschweig.
  21. Shramko, Y. (2005). Dual intuitionistic logic and a variety of negations: The logic of scientific research. Studia Logica, 80 (2-3):347-367.
  22. Urbas, I. (1996). Dual-intuitionistic logic. Notre Dame Journal of Formal Logic, 37:440-451.
  23. Vorob'ev, N. (1952). A constructive propositional calculus with strong negation (in Russian). Doklady Akademii Nauk SSR, 85:465-468.
  24. Wagner, G. (1991). Logic programming with strong negation and inexact predicates. Journal of Logic and Computation, 1:835-859.
  25. Wansing, H. (1993). The logic of information structures. In Lecture Notes in Computer Science, volume 681, pages 1-163.
  26. Wansing, H. (2005). Connexive modal logic. Advances in Modal Logic, 5:367-385.
  27. Wansing, H. (2014). Connexive logic. Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/logic-connexive/.
Download


Paper Citation


in Harvard Style

Kamide N. (2016). Duality in Some Intuitionistic Paraconsistent Logics . In Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-172-4, pages 288-297. DOI: 10.5220/0005684202880297


in Bibtex Style

@conference{icaart16,
author={Norihiro Kamide},
title={Duality in Some Intuitionistic Paraconsistent Logics},
booktitle={Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2016},
pages={288-297},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005684202880297},
isbn={978-989-758-172-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Duality in Some Intuitionistic Paraconsistent Logics
SN - 978-989-758-172-4
AU - Kamide N.
PY - 2016
SP - 288
EP - 297
DO - 10.5220/0005684202880297