Table 3: The distribution of the characteristics of Simeck32 in the differential with input and output difference (0000,0002) →
(0002,0000). The invalid characteristics is due to the special property of the dependent inputs of the AND operations in
Simeck (Biryukov et al., 2014; Sun et al., 2014b; Sun et al., 2014c).
Prob. 2
−38
2
−40
2
−41
2
−42
2
−43
2
−44
2
−45
2
−46
2
−47
2
−48
2
−49
2
−50
Invalid
#Char. 4 62 52 427 637 2427 4384 12477 22742 48324 62039 50411 169458
Table 4: Sufficient Conditions of Extended Differential Path of 21-round Simeck32/64.
Rounds Input Differences of Each Round
0 1,∗,0, 0,0, ∗, ∗,∗,0, ∗, ∗,∗, ∗, 1,∗,∗, ∗, ∗,∗, 0,∗,∗, ∗,∗, ∗,∗, ∗,∗, ∗ , ∗,∗,∗
1
0,∗ , 0,0,0,0,∗, 0,0, 0,∗,∗, ∗,0,1,∗, 1, ∗,0,0, 0, ∗,∗, ∗ , 0,∗,∗,∗, ∗,1, ∗, ∗
2 0,1,0,0, 0, 0,0, 0, 0, 0,0,1,0,0, 0,1,0,∗,0, 0,0,0, ∗,0, 0, 0,∗,∗, ∗, 0,1, ∗
3
1,0,0,0,0, 0,0,0,0, 0, 0,0,0, 0, 0,0,0,1, 0, 0,0,0,0, 0,0, 0, 0,1,0, 0, 0,1
3→16 13-round differential
16 0,1,0, 0,0,0, 0,0,0, 0,0, 0, 0,0,0,0, 0,0, 0,0,0,0, 0,0, 0, 0,0,0, 0,0, 0,0
17
1,∗,0, 0,0,0, 0,0,0, 0,0, 0, ∗,0,0,0, 0,1,0, 0, 0,0,0, 0,0,0,0, 0,0, 0,0,0
18 ∗,∗,0, 0,0,0, 0,∗,0, 0,0, ∗, ∗,0,0,1, 1,∗,0, 0, 0,0,0,0, 0,0,0,0,∗, 0,0,0
19
∗,∗,∗, 0,0,0, ∗,∗,0, 0,∗, ∗, ∗,0,1,∗, ∗,∗, 0,0, 0,0,0, ∗, 0,0,0,∗,∗, 0,0,1
20 ∗,∗,∗, 0,0,∗, ∗,∗,0, ∗,∗, ∗, ∗,∗,∗,∗, ∗,∗, ∗, 0,0,0,∗, ∗, 0,0, ∗,∗, ∗, 0,1,∗
21
∗,∗,∗, 0,∗,∗, ∗,∗,∗, ∗,∗, ∗, ∗,∗,∗,∗, ∗,∗, ∗, 0,0,∗, ∗, ∗,0,∗,∗, ∗, ∗,∗,∗,∗
Table 2: A differential characteristic of 13-round
Simeck32/64 with probability 2
−38
.
Rnds The input differences
0 0000000000000000 0000000000000010
1 0000000000000010 0000000000000000
2 0000000000000100 0000000000000010
3 0000000000001010 0000000000000100
4 0000000000010000 0000000000001010
5 0000000000111010 0000000000010000
6 0000000000001100 0000000000111010
7 0000000000101010 0000000000001100
8 0000000000010000 0000000000101010
9 0000000000001010 0000000000010000
10 0000000000000100 0000000000001010
11 0000000000000010 0000000000000100
12 0000000000000000 0000000000000010
13 0000000000000010 0000000000000000
ber of rounds that we add before and after the dif-
ferential, the program can give out the number of
all subkey bits involved in the extended rounds |sk|
and the number of solutions to these subkey bits for
each pair in T
1
, say C
s
. A wrong subkey occurs
with probability p
e
=
C
s
2
|sk|
and the expected count of
a wrong subkey for all pairs in T
1
is λ
e
= N
r
× p
e
.
Combining the complexity of searching subkey bits
involved in the extended paths that get more than
s = ⌊λ
r
⌋ hits and the complexity of traversing the
remaining subkey bits, the time complexity of the
attack is dominated by
T
es
= 2
mn
× (1− Poisscd f(s,λ
e
)), (3)
where Poisscd f(·,y) is the cumulative distribution
function of Poisson distribution with expectation y.
The success probability is
1− Poisscd f (s,λ
r
), (4)
where Poisscd f(s,λ
r
) denotes the probability that
there is no subkey bits with more than s hits.
4 DIFFERENTIAL ATTACKS ON
SIMECK WITH DYNAMIC
KEY-GUESSING TECHNIQUES
4.1 A Differential of Simeck32/64
Though several differentials with high probability of
Simeck family were given (K¨olbl and Roy, 2015),
we want to get new differentials with lower hamming
weight. Using automatic search method with MILP
techniques (Qiao et al., 2015; Sun et al., 2014a;
Sun et al., 2014b; Sun et al., 2014c), we find a 13-
round differential characteristic of Simeck32/64 with
probability 2
−38
(see Table 2). Then we search for
all differential characteristics with the same input and
output differences and with probability q such that
2
−50
≤ q ≤ 2
−38
. The distribution of the differential
characteristics is given in Table 3. Combing all the
differential characteristics we get that the probability
of the differential (0x0, 0x2) → (0x2,0x0) is about
2
−29.64
.