lung carcinomas by mRNA expression profiling re-
veals distinct adenocarcinoma subclasses. PNAS,
98(24):13790–5.
Chow, C. (1970). On optimum recognition error and reject
tradeoff. IEEE Transactions on Information Theory,
16(1):41–46.
Diaz-Uriarte, R. and Alvarez de Andres, S. (2006). Gene
selection and classification of microarray data using
random forest. BMC Bioinformatics, 7(3).
Dudoit, S., Fridlyand, J., and Speed, P. (2002). Compari-
son of discrimination methods for classification of tu-
mors using gene expression data. Journal of American
Statististial Association, 97:77–87.
Furey, T., Cristianini, N., Duffy, N., Bednarski, D., Schum-
mer, M., and Haussler, D. (2000). Support vector
machine classification and validation of cancer tissue
samples using microarray expression data. Bioinfor-
matics, 16(10):906–914.
Hood, L. and Friend, S. H. (2011). Predictive, personalized,
preventive, participatory (p4) cancer medicine. Nat
Rev Clin Oncol, 8(3):184–187.
Kapoor, A. and Horvitz, E. (2009). Breaking boundaries:
Active information acquisition across learning and di-
agnosis. Advances in neural information processing
systems.
Khan, J., Wei, J., Ringner, M., Saal, L., Ladanyi, M., West-
ermann, F., Berthold, F., Schwarb, M., Antonescu, C.,
Peterson, C., and Meltzer, P. (2001). Classification
and diagnostic prediction of cancers using gene ex-
pression profiling and artificial neural networks. Na-
ture Medecine, 7:673–679.
Nan, F., Wang, J., and Saligrama, V. (2015). Feature-
budgeted random forest. International Conference on
Machine Learning.
Raykar, V. C., Krishnapuram, B., and Yu, S. (2010). De-
signing efficient cascaded classifiers: tradeoff be-
tween accuracy and cost. In Proceedings of the 16th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 853–860.
ACM.
Saar-Tsechansky, M., Melville, P., and Provost, F. (2009).
Active feature-value acquisition. Management Sci-
ence, 55(4):664–684.
Singh, D., Febbo, P., Ross, K., Jackson, D., Manola, J., and
Ladd, C. (2002). Gene expression correlates of clini-
cal prostate cancer behavior. Cancer Cell., 1(2):203–
209.
Smith, J. W., Everhart, J., Dickson, W., Knowler, W., and
Johannes, R. (1988). Using the adap learning algo-
rithm to forecast the onset of diabetes mellitus. In Pro-
ceedings of the Annual Symposium on Computer Ap-
plication in Medical Care, page 261. American Med-
ical Informatics Association.
Tan, Y. F. and yen Kan, M. (2010). Cost-sensitive attribute
value acquisition for support vector machines. Tech-
nical report, National University of Singapore.
Trapeznikov, K. and Saligrama, V. (2013). Supervised se-
quential classification under budget constraints. In
Proceedings of the Sixteenth International Conference
on Artificial Intelligence and Statistics, pages 581–
589.
Viola, P. and Jones, M. J. (2004). Robust real-time face
detection. International journal of computer vision,
57(2):137–154.
Wang, L., Lin, J., and Metzler, D. (2011). A cascade
ranking model for efficient ranked retrieval. In Pro-
ceedings of the 34th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, SIGIR ’11, pages 105–114, New York, NY,
USA. ACM.
Yang Pengyi; Hwa Yang Yee; Bing B. Zhou;, B. B. Z.
(2010). A review of ensemble methods in bioinfor-
matics. Current Bioinformatics, 5(4):296.