Chen, M. Y., Sohn, T., Chmelev, D., Haehnel, D., High-
tower, J., Hughes, J., LaMarca, A., Potter, F., Smith,
I., and Varshavsky, A. (2006). Practical metropolitan-
scale positioning for GSM phones. In Ubiqui-
tous Computing (UbiComp), pages 225–242, Orange
County, CA.
Ching, W., Rue, J. T., Binghao, L., and Rizos, C. (2010).
Uniwide WiFi based positioning system. In Tech-
nology and Society (ISTAS), pages 180–189, Wollon-
gong, Australia.
Coates, A., Lee, H., and Ng, A. (2011). An analysis of
single-layer networks in unsupervised feature learn-
ing. In JMLR Artificial Intelligence and Statistics,
pages 215–223, Fort Lauderdale, FL.
Cormen, T. H., Leiserson, C. H., Rivest, R. L., and
Stein, C. (1990). Introduction to Algorithms. MIT
Press/McGraw-Hill Book Company, Cambridge, MA.
Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Unsu-
pervised learning and clustering. In Pattern Classifi-
cation, pages 517–601. Wiley, New York, NY.
Ferris, B., Fox, D., and Lawrence, N. D. (2007). WiFi-
SLAM using gaussian process latent variable models.
In International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 2480–2485, Hyderabad, India.
Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y.
(2009). What is the best multi-stage architecture for
object recognition? In International Conference on
Computer Vision (ICCV), pages 2146–2153, Kyoto,
Japan.
Kaemarungsi, K. and Krishnamurthy, P. (2004). Model-
ing of indoor positioning systems based on location
fingerprinting. In IEEE Computer and Communica-
tion Societies (INFOCOM), pages 1012–1022, Hong
Kong.
Kaufman, L. and Rousseeuw, P. J., editors (1990). Finding
Groups in Data: An Introduction to Cluster Analysis.
Wiley, New York, NY.
Manning, C. D., Raghavan, P., and Schutze, H. (2008). In-
troduction to Information Retrieval. Cambridge Uni-
versity Press, Cambridge, United Kingdom.
Marques, N., Meneses, F., and Moreira, A. (2012). Combin-
ing similarity functions and majority rules for multi-
building, multi-floor, WiFi positioning. In Indoor Po-
sitioning and Indoor Navigation (IPIN), pages 1–9,
Sydney, Australia.
Nowak, E., Jurie, F., and Triggs, B. (2006). Sampling strate-
gies for bag-of-features image classification. In Euro-
pean Conference on Computer Vision (ECCV), pages
490–503, Graz, Austria.
R (1997). R project for statistical computing. http://www.r-
project.org/.
Rajaraman, R. and Ullman, J. D. (2011). Mining of Massive
Datasets. Cambridge University Press, New York,
NY.
Ruoxi, J., Ming, J., and Costas, J. S. (2014). Sound-
Loc: Acoustic method for indoor localization with-
out infrastructure. Computing Research Reposi-
tory, Human-Computer Interaction, arXiv:1407.4409.
http://arxiv.org/abs/1407.4409.
Salton, G., Wong, A., and Yang, C. S. (1975). A vector
space model for automatic indexing. Communications
of the ACM, 18(11):613–620.
Torres-Sospedra, J., Montoliu, R., Martinez-Uso, A., Ar-
nau, T. J., Avariento, J. P., Benedito-Bordonau, M.,
and Huerta, J. (2014). UJIIndoorLoc: A new
multi-building and multi-floor database for WLAN
fingerprint-based indoor localization problems. In In-
door Positioning and Indoor Navigation (IPIN), Bu-
san, Korea.
UCI (2014). Machine learning repos-
itory - UJIIndoorLoc data set.
http://archive.ics.uci.edu/ml/datasets/UJIIndoorLoc.
Woo, S., Jeong, S., Mok, E., Xia, L., Choi, C., Pyeon, M.,
and Heo, J. (2011). Application of WiFi-based indoor
positioning system for labor tracking at construction
sites: A case study in Guangzhou MTR. Automation
in Construction, 20(1):3–13.
Zhou, J. and Shi, J. (2009). RFID localization algorithms
and application: a review. Journal of Intelligent Man-
ufacturing, 20(6):695–707.
A Mobile Indoor Positioning System Founded on Convolutional Extraction of Learned WLAN Fingerprints
223