four robots (whose speeds satisfy a certain mono-
tonicity property) remains open. The case of differ-
ent domains is interesting and can be surprisingly de-
manding.
ACKNOWLEDGEMENTS
For the first and third author, this research was sup-
ported in part by NSERC grants.
REFERENCES
Agmon, N., Kraus, S., and Kaminka, G. A. (2008). Multi-
robot perimeter patrol in adversarial settings. In ICRA,
pages 2339–2345.
Almeida, A., Ramalho, G., Santana, H., Tedesco, P. A.,
Menezes, T., Corruble, V., and Chevaleyre, Y. (2004).
Recent advances on multi-agent patrolling. In SBIA,
pages 474–483.
Alpern, S., Morton, A., and Papadaki, K. (2009). Optimiz-
ing randomized patrols. Operational Research Group,
London School of Economics and Political Science.
Alpern, S., Morton, A., and Papadaki, K. (2011). Patrolling
games. Operations research, 59(5):1246–1257.
Amigoni, F., Basilico, N., Gatti, N., Saporiti, A., and
Troiani, S. (2010). Moving game theoretical pa-
trolling strategies from theory to practice: An usarsim
simulation. In ICRA, pages 426–431.
Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M., and Per-
alta, R. (2006). Computation in networks of passively
mobile finite-state sensors. Distributed Computing,
18(4):235–253.
Angluin, D., Aspnes, J., Eisenstat, D., and Ruppert, E.
(2007). The computational power of population pro-
tocols. Distributed Computing, 20(4):279–304.
Beauquier, J., Burman, J., Clement, J., and Kutten, S.
(2010). On utilizing speed in networks of mobile
agents. In Proceeding of the 29th ACM SIGACT-
SIGOPS Symposium on Principles of distributed com-
puting, pages 305–314. ACM.
Chevaleyre, Y. (2004). Theoretical analysis of the multi-
agent patrolling problem. In IAT, pages 302–308.
Cieliebak, M., Flocchini, P., Prencipe, G., and Santoro,
N. (2012). Distributed computing by mobile robots:
Gathering. SIAM J. Comput., 41(4):829–879.
Collins, A., Czyzowicz, J., Gasieniec, L., Kosowski,
A., Kranakis, E., Krizanc, D., Martin, R., and
Morales Ponce, O. (2013). Optimal patrolling of frag-
mented boundaries. In SPAA.
Czyzowicz, J., Gasieniec, L., Kosowski, A., and Kranakis,
E. (2011). Boundary patrolling by mobile agents
with distinct maximal speeds. Algorithms–ESA 2011,
pages 701–712.
Czyzowicz, J., Kranakis, E., and Pacheco, E. (2013). Lo-
calization for a system of colliding robots. In ICALP
(2), pages 508–519.
Dijkstra, E. W. (1982). Selected writings on computing: a
personal perspective. Springer-Verlag New York, Inc.
Dumitrescu, A., Ghosh, A., and Csaba, D. T. (2014).
On fence patrolling by mobile agents. CoRR,
abs/1401.6070.
Elmaliach, Y., Agmon, N., and Kaminka, G. A. (2009).
Multi-robot area patrol under frequency constraints.
Ann. Math. Artif. Intell., 57(3-4):293–320.
Elmaliach, Y., Shiloni, A., and Kaminka, G. A. (2008). A
realistic model of frequency-based multi-robot poly-
line patrolling. In AAMAS (1), pages 63–70.
Elor, Y. and Bruckstein, A. M. (2010). Autonomous multi-
agent cycle based patrolling. In ANTS, pages 119–
130.
Hare, J., Gupta, S., and Wilson, J. (2015). Decentralized
smart sensor scheduling for multiple target tracking
for border surveillance. In ICRA, pages 3265–3270.
IEEE.
Hazon, N. and Kaminka, G. A. (2008). On redun-
dancy, efficiency, and robustness in coverage for mul-
tiple robots. Robotics and Autonomous Systems,
56(12):1102–1114.
Kawamura, A. and Kobayashi, Y. (2012). Fence patrolling
by mobile agents with distinct speeds. In ISAAC,
pages 598–608.
Machado, A., Ramalho, G., Zucker, J.-D., and Drogoul, A.
(2002). Multi-agent patrolling: An empirical analysis
of alternative architectures. In MABS, pages 155–170.
Marden, M. (1949). The Geometry of the Zeros of a Polyno-
mial in a Complex Variable, volume 3 of Math. Surv.
AMS.
Marino, A., Parker, L. E., Antonelli, G., and Caccavale, F.
(2009). Behavioral control for multi-robot perimeter
patrol: A finite state automata approach. In ICRA,
pages 831–836.
Pasqualetti, F., Franchi, A., and Bullo, F. (2010). On op-
timal cooperative patrolling. In CDC, pages 7153–
7158.
Yanovski, V., Wagner, I. A., and Bruckstein, A. M. (2003).
A distributed ant algorithm for efficiently patrolling a
network. Algorithmica, 37(3):165–186.
Fence Patrolling with Two-speed Robots
241