Hu, M., Wang, Y., Zhang, Z., Zhang, D., and Little, J.
(2013). Incremental learning for video-based gait
recognition with lbp flow. IEEE Transactions on Cy-
bernetics, 43(1):77–89.
Huang, D.-Y., Lin, T.-W., Hu, W.-C., and Cheng, C.-H.
(2013). Gait recognition based on gabor wavelets and
modified gait energy image for human identification.
Journal of Electronic Imaging, 22(4).
Iakovidis, D., Keramidas, E., and Maroulis, D. (2008).
Fuzzy local binary patterns for ultrasound texture
characterization. In Campilho, A. and Kamel, M., edi-
tors, Image Analysis and Recognition, volume 5112 of
Lecture Notes in Computer Science, pages 750–759.
Springer Berlin Heidelberg.
Kale, A., Chowdhury, A., and Chellappa, R. (2003). To-
wards a view invariant gait recognition algorithm. In
Proceedings of IEEE Conference on Advanced Video
and Signal Based Surveillance.
Kale, A., Rajagopalan, A., Cuntoor, N., and Kruger, V.
(2002). Gait-based recognition of humans using con-
tinuous hmms. In Proc. 5th IEEE International Conf.
on Automatic Face and Gesture Recognition.
Kale, A., Sundaresan, A., Rajagopalan, A., Cuntoor, N.,
Roy-Chowdhury, A., Kruger, V., and Chellappa, R.
(2004). Identification of humans using gait. IEEE
Transactions on Image Processing, 13(9):1163–1173.
Kellokumpu, V., Zhao, G., Li, S., and Pietik
¨
ainen, M.
(2009). Dynamic texture based gait recognition.
In Advances in Biometrics, volume 5558 of Lecture
Notes in Computer Science. Springer Berlin Heidel-
berg.
Lee, L. (2001). Gait dynamics for recognition and classifi-
cation. In Proceedings of the 5th IEEE International
Conference on Automatic Face and Gesture Recogni-
tion (AFGR).
Lee, L. and Grimson, W. (2002). Gait analysis for recogni-
tion and classification. In Proceedings of Fifth IEEE
International Conference on Automatic Face and Ges-
ture Recognition, pages 148–155.
Lee, T. K. M., Belkhatir, M., and Sanei, S. (2014). A com-
prehensive review of past and present vision-based
techniques for gait recognition. Multimedia Tools and
Applications, 72(3):2833–2869.
Li, C.-R., Li, J.-P., Yang, X.-C., and Liang, Z.-W. (2012).
Gait recognition using the magnitude and phase of
quaternion wavelet transform. In International Con-
ference on Wavelet Active Media Technology and In-
formation Processing (ICWAMTIP).
Lu, J. and Zhang, E. (2007). Gait recognition for hu-
man identification based on {ICA} and fuzzy {SVM}
through multiple views fusion. Pattern Recognition
Letters, 28(16):2401 – 2411.
Mansur, A., Makihara, Y., Muramatsu, D., and Yagi, Y.
(2014). Cross-view gait recognition using view-
dependent discriminative analysis. In IEEE Interna-
tional Joint Conference on Biometrics (IJCB).
Niyogi, S. and Adelson, E. (1994). Analyzing and rec-
ognizing walking figures in xyt. In Proceedings of
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, pages 469–474.
Nizami, I. F., Hong, S., Lee, H., Lee, B., and Kim, E.
(2010). Automatic gait recognition based on proba-
bilistic approach. International Journal of Imaging
Systems and Technology, 20(4):400–408.
Ojala, T., Pietikainen, M., and Maenpaa, T. (2002). Mul-
tiresolution gray-scale and rotation invariant texture
classification with local binary patterns. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
24(7):971–987.
Ran, Y., Weiss, I., Zheng, Q., and Davis, L. (2007). Pedes-
trian detection via periodic motion analysis. Interna-
tional Journal of Computer Vision, 71(2).
Sarkar, S., Phillips, P., Liu, Z., Vega, I., Grother, P., and
Bowyer, K. (2005). The humanid gait challenge prob-
lem: data sets, performance, and analysis. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 27(2):162–177.
Wang, K., Xing, X., Yan, T., and Lv, Z. (2014). Couple
metric learning based on separable criteria with its ap-
plication in cross-view gait recognition. In Biometric
Recognition, volume 8833 of Springer Lecture Notes
in Computer Science, pages 347–356.
Wang, L., Hu, W., and Tan, T. (2002). A new attempt to
gait-based human identification. In Proc. 16th Inter-
national Conference on Pattern Recognition.
Yu, S., Tan, D., and Tan, T. (2006). A framework for eval-
uating the effect of view angle, clothing and carrying
condition on gait recognition. In Proc. 18th Interna-
tional Conf. on Pattern Recognition, volume 4, pages
441–444.
Zhang, E., Zhao, Y., and Xiong, W. (2010). Active energy
image plus 2dlpp for gait recognition. Signal Process-
ing, 90(7):2295 – 2302.
Zhao, G. and Pietikainen, M. (2007). Dynamic tex-
ture recognition using local binary patterns with an
application to facial expressions. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
29(6):915–928.
Gait-based Recognition for Human Identification using Fuzzy Local Binary Patterns
321