that RadioBio data can be an useful tool to mine ef-
fective dose constraints hidden into the shape of Dose
Volume Histograms. Moreover, the considered case-
study can be extended by considering a larger sample
of patients, in order to provide stronger evidences and
better optimise planning procedures in treatment val-
idation and predict possible toxicity. The future chal-
lenge will be the personalisation of treatments and
complications rates reduction.
Future work include the development of a user-
friendly graphical user interface, as proposed in Fig-
ure 5, an experimental analysis considering a larger
number of patients, and the involvement of a larger
number of medical experts.
REFERENCES
Bentzen, S. and Tucker, S. (1997). Quantifying the position
and steepness of radiation dose-response curves. Int J
Radiat Biol., 71(5):531–42.
Bentzen, S. M., Constine, L. S., Deasy, J. O., Eisbruch, A.,
Jackson, A., Marks, L. B., Haken, R. K. T., and Yorke,
E. D. (2010). Quantitative analyses of normal tissue
effects in the clinic (quantec): An introduction to the
scientific issues. Radiation Oncology, 76(3):S3–S9.
Burman, C., Kutcher, G., Emami, B., and Goitein, M.
(1991). Fitting of normal tissue tolerance data to
an analytic function. Int J Radiat Oncol Biol Phys,
21(1):123–35.
Cox, J., Stetz, J., and PajaK, T. (1995). Toxicity criteria
of the radiation therapy oncology group (rtog) and the
european organization for research and treatment of
cancer (eortc). Int. J. Radiation Oncology Biol. Phys,
31(5):1341–1346.
Dinapoli, N., Alitto, A., Vallati, M., Gatta, R., Autorino, R.,
Boldrini, L., Damiani, A., and Valentini, V. (2015a).
Moddicom: A complete and easily accessible library
for prognostic evaluations relying on image features.
In IEEE Engineering in Medicine and Biology Society,
37th Annual International Conference.
Dinapoli, N., Alitto, A. R., Vallati, M., Gatta, R., Au-
torino, R., Boldrini, L., Damiani, A., and Valentini,
V. (2015b). Moddicom: a complete and easily ac-
cessible library for prognostic evaluations relying on
image features. In Proceedings of the 37th Annual
International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBS). IEEE.
Eichelberg, M., Riesmeier, J., Wilkens, T., Hewett, A.,
Barth, A., and Jensch, P. (2004). Ten years of medical
imaging standardization and prototypical implemen-
tation: the dicom standard and the offis dicom toolkit
(dcmtk). In Medical Imaging 2004, pages 57–68.
Gay, H. and Niemierko, A. (2007). A free program for cal-
culating eud-based ntcp and tcp in external beam ra-
diotherapy. Phys Med., 23(3-4):115–25.
Marks, L., Bentzen, S., Deasy, J., Kong, F.-M., Bradley,
J., Vogelius, I., Naqa, I., Hubbs, J., Lebesque, J., Tim-
merman, R., Martel, M., and Jackson, A. (2010a). Ra-
diation dose-volume effects in the lung. Int. J. Radia-
tion Oncology Biol. Phys, 76(3):S70–S76.
Marks, L. B., Yorke, E. D., Jackson, A., Haken, R. K. T.,
Constine, L. S., Eisbruch, A., Bentzen, S. M., Nam, J.,
and Deasy, J. O. (2010b). Use of normal tissue com-
plication probability models in the clinic. Radiation
Oncology, 76(3):S3–S9.
Michalski, J., Gay, H., Jackson, A., Tucker, S., and Deasy,
J. (2010). Radiation dose-volume effects in radiation-
induced rectal injury. Int. J. Radiation Oncology Biol.
Phys, 76(3):S123–S129.
Munro, T. R. and Gilbert, C. W. (1961). The relation be-
tween tumour lethal doses and the radiosensitivity of
tumour cells. Br J Radiol., 34:246–51.
Naqa, I. E., Bradley, J., Blanco, A., Lindsay, P., Vicic, M.,
Hope, A., and Deasy, J. (2006). Multi-variable model-
ing of radiotherapy outcomes including dose-volume
and clinical factors. Int. J. Radiation Oncology Biol.
Phys, 64(4):1275–1286.
Niemierko, A. (1997). Reporting and analyzing dose distri-
butions: a concept of equivalent uniform dose. Medi-
cal physics, 24(1):103–10.
of Health, U. D. and Human Services, National Institutes
of Health, N. C. I. v. (June 14 2010). Common termi-
nology criteria for adverse events (ctcae).
Okunieff, P., Morgan, D., Niemierko, A., and Suit, H.
(1995). Radiation dose-response of human tumors.
Int J Radiat Oncol Biol Phys, 32(4):1227–37.
Shipley, W. U., Tepper, J. E., Prout, G. R., Verhey, L., Men-
diondo, O., Goitein, M., Koehler, A., and Suit, H.
(1979). Proton radiation as boost therapy for local-
ized prostatic carcinoma. JAMA, 241(18):1912–5.
Van den Heuvel, F. (2006). Decomposition analysis of dif-
ferential dose volume histograms. Medical Physics,
33(2):297.
Warkentin, B., Stavrev, P., Stavreva, N., Field, C., and Fal-
lone, B. (2004). A tcp-ntcp estimation module using
dvhs and known radiobiological models and parame-
ter sets. J Appl Clin Med Phys, 5(1):50–63.
RadioBio data: A Moddicom Module to Predict Tumor Control Probability and Normal Tissue Complication Probability in Radiotherapy
281