4 CONCLUSIONS
Besides the chaotic invariant measures such as
correlation dimension and maximal Lyapunov
exponent, some other feature sets which can be
extracted with non-linear time series analysis may be
used to further evaluate some of the brain vessel
diseases. The chaotic invariant measures may be
supported with these feature sets. These features
alone or with chaotic measures together may be used
to train a classifier. After the generalization, the
classifier may be used to make automatic diagnosis
of the brain diseases.
The non-linear cross prediction errors of the
TCD signals and the statistical quantitative values
extracted from the recurrence plots can also be used
to train various classifiers in order to make
automated diagnosis of the brain vessel diseases.
The reconstructed 3-D chaotic attractor
pictures can be used to extract another feature set for
the TCD signals.
REFERENCES
Casdagli, M., 1997. Recurrence plots revisited. Physica D.
108:12-44.
Eckmann, J.P., Oliffson, K.S., Ruelle, D., 1987.
Recurrence plots of dynamical systems. Europhys.
Lett. 4(9): 973-977.
Evans, D.H., McDicken, W.N., Skidmore R., Woodcock,
J.P., 1989. Doppler Ultrasound: Physics,
Instrumentation and Clinical Applications. Wiley,
Chichester.
Fraser, A. M., Swinney, H. L. 1986. Independent
coordinates for strange attractors from mutual
information, Phys. Rev. A 33: 1134.
Guler, I., Hardalac, F., Barisci N., 2002. Application of
FFT analyzed cardiac Doppler signals to fuzzy
algorithm, Comp. Biol. Med. 32:435–444.
Grassberger, P., Procaccia, I., 1983. Characterization of
Strange Attractors. Physical Review Letters, 50:346-
349.
Hegger, R., Kantz, H., Schreiber, T., 1999. Practical
implementation of nonlinear time series methods: The
TISEAN package. Chaos, 9: 413.
Kennel, M. B. Brown, R., Abarbanel, H. D. I., 1992.
Determining embedding dimension for phase-space
reconstruction using a geometrical construction.
Physics Rev. A. 45: 340-353.
Keunen, R.W., Pijlman, H.C., Visee, H.F., Vliegen, J.H.,
Tavy, D.L., Stam, K.J., 1994. Dynamical chaos
determines the variability of transcranial Doppler
signals, Neurol. Res. 16: 353–358.
Keunen, R.W., Vliegen, J.H., Stam, C.J., Tavy, D.L.,
1996. Nonlinear transcranial Doppler analysis
demonstrates age-related changes of cerebral
hemodynamics, Ultrasound Med. Biol. 22:383–390.
Kantz, H., 1994. A robust method to estimate the maximal
Lyapunov exponent of a time series. Phys. Lett. A.
185: 77-87.
Kantz, H., Schreiber T., 2005. Nonlinear Time Series
Analysis, Cambridge University Press.
Ozturk, A., Arslan A., 2007. Classification of transcranial
Doppler signals using their chaotic invariant
measures, Computer Methods and Programs in
Biomedicine, 86(2): 171-180.
Ozturk A., Arslan A., Hardalac F., 2008. Comparison of
neuro-fuzzy systems for classification of transcranial
Doppler signals with their chaotic invariant measures,
Expert Systems with Applications, 34(2): 1044-1055.
Ozturk A., Arslan A., 2015. Neuro-fuzzy Classification of
Transcranial Doppler Signals with Chaotic Meaures
and Spectral Parameters, 3
rd
Science and Information
Conference, 591-596.
Provenzale, A., Smith, L. A., Vio, R., Murante, G., 1992.
Distinguishing between low-dimensional dynamics
and randomness in measured time series, Physica D
58, 31.
Schreiber, T., Schmitz, A. 1996. Improved surrogate data
for nonlinearity tests, Phys. Rev. Lett. 77, 635.
Schreiber, T., 1997. Detecting and analysing non-
stationarity in a time series with nonlinear cross-
predictions, Phys. Rev. Lett. 78:843.
Serhatlioglu S., Hardalac F., Guler I., 2003. Classification
of transcranial Doppler signals using artificial neural
network, J. Med. Syst. 27:205–214.
Sprott, J.C., 2002. Chaos and Time-Series Analysis,
Oxford University Pres, New York.
Rosenstein, M. T., Collins, J. J., De Luca, C. J., 1993. A
practical method for calculating largest Lyapunov
exponents from small data sets, Physica D 65,: 117.
Theiler, J., 1990. Estimating fractal dimension. J. Opt.
Soc. Amer. A 7, 1055-1073.
Ubeyli E.D., Guler I., 2005. Adaptive neuro-fuzzy
inference systems for analysis of internal carotid
arterial Doppler signals, Comp. Biol. Med., 35: 687–
702.
Visee, H.F., Keunen, R.W., Pijlman, H.C., Vliegen, J.H.,
Tavy, D.L., Stam, K.J., Giller, C.A., 1995. The
physiological and clinical significance of nonlinear
TCD waveform analysis in occlusive cerebrovascular
disease, Neurol. Res. 17:384–388.
Vliegen, J.H.R., Stam, C.J., Rombouts, S.A.R., Keunen
R.W.M., 1996. Rejection of the ‘filtered noise’
hypothesis to explain the variability of transcranial
Doppler signals: a comparison of original TCD data
with Gaussian-scaled phase randomized surrogate
data sets, Neurol. Res. 18: 19–24.
Webber, C.L. Jr., Zbilut, J.P., 1994. Dynamical
assessment of physiological systems and states using
recurrence plot strategies. Journal of Applied
Physiology. 76:965-973.
Zbilut, J.P., Guiliani, A., Webber, C.L. Jr., 1998.
Recurrence quantification analysis and principle
components in the detection of short complex signals.
Physics Letters A, 237:131-135.