ACKNOWLEDGEMENTS
This research was partially supported by National
Natural Science Foundation (NSFC) of China under
project No. 61403403 and First Class General Finan-
cal Grant of Chian Postdoctoral Science Foundation
under project No.2015M52707.
REFERENCES
Barnard, K. (1999). Dr. Thesis, Practical Color Constancy.
Simon Fraser University, Vancouver.
Bousetouane, F., Dib, L., and Snoussi, H. (2013). Improved
mean shift integrating texture and color features for
robust real time object tracking. The Visual Computer,
29(3):155–170.
Brainard, D. H. and Freeman, W. T. (1997). Bayesian color
constancy. Journal of the Optical Society of American
A: Optics and Image Science, and Vision, 14(7):1393–
1411.
Buchsbaum, G. (1980). A spatial processor model for ob-
ject color perception. Journal of the Franklin Institute,
310(1):337–350.
Cardei, V., Funt, B., and Barnard, K. (2002). Estimating
the scene illumination chromaticity using a neural net-
work. Journal of the Optical Society of American A:
Optics and Image Science, and Vision, 19(12):2374–
2386.
Chakrabarti, A., Hirakawa, K., and Zickler, T. (2008). Color
constancy beyond bags of pixels. In Computer Vision
and Pattern Recognition. IEEE.
Chakrabarti, A., Hirakawa, K., and Zickler, T. (2012). Color
constancy with spatio-spectral statistics. Pattern Anal-
ysis and Machine Intelligence, IEEE Transaction on,
34(8):1509–1519.
Ciurea, F. and Funt, B. (2003). A large images database
for color constancy research. In 11th Color Imaging
Conference, pages 160–164.
F.-H. Cheng, W.-H. H. and Chen, T.-W. (1998). Recovering
colors in an image with chromatic illuminant. Image
Processing, IEEE Transactions on, 7(11):1524–1533.
Finlayson, G., Drew, M., and Funt, B. (1993). Diagonal
transforms suffice for color constancy. In Int. Conf.
Computer Vision. IEEE.
Finlayson, G. and Trezzi, E. (2004). Shades of grey and
color constancy. In 12th Color Imaging Conference,
pages :37–41.
Finlayson, G. D., Hordley, S. D., and Hubel, P. M. (2001).
Color by correlation: A simple, unifying framework
for color constancy. Pattern Analysis and Machine In-
telligence, IEEE Transaction on, 23(11):1209–1221.
Forsyth, D. A. (1990). A novel algorithm for color con-
stancy. Int. J. Computer Vision, 5:5–36.
Funt, B. and Xiong, W. (2004). Estimating illumination
chromaticity via support vector regression. In 12th
Color and Imaging Conference final program and
Proceedings, pages 47–52.
Gehler, P. V., Rother, C., Blake, A., Minka, T., and Sharp, T.
(2008). Bayesian color constancy revisited. In Com-
puter Vision and Pattern Recognition. IEEE.
Gijsenij, A. and Gevers, T. Color constancy research
website on illumination estimation. http:// colorcon-
stancy.com.
Gijsenij, A., Gevers, T., and Weijer, V. D. (2010). General-
ized gamut mapping using image derivative structures
for color constancy. Int. J. Computer Vision, 86(2-
3):127–139.
Lai, S., Tan, X., Liu, Y., Wang, B., and Zhang, M. (2013).
Fast and robust color constancy algorithm based on
grey block-differencing hypothesis. Optical review,
20(4):341–347.
Land, E. (1977). The retinex theory of color vision. Scien-
tific American, 237(6):108–128.
Pan, S. and Chen, J.-S. (2009). A damped gauss-newton
method for the second-order cone complementarity
problem. Applied Mathematics and Optimization, 59.
Rosenberg, C., Minka, T., and Ladsariya, A. (2004).
Bayesian color constancy with non-gaussian models.
In In Advances in Neural Information Processing Sys-
tems (NIPS). Cambridge MA, MIT Press.
Stottinger, J., Hanbury, A., Sebe, N., and Gevers, T. (2012).
Sparse color interest points for image retrieval and ob-
ject categorization. Image Processing, IEEE Transac-
tions on, 21(5):2681–2692.
Subramanian, P. K. (1993). Gauss-newton methods for the
complementarity problem. J. Optimization theory and
applications, 77(3).
van de Weijer, J., Gevers, T., and Gijsenij, A. (2007).
Edge based color constancy. Image Processing, IEEE
Transactions on, 16(9):2207–2214.
Zhuang, H., Low, K., and Yau, W. (2012). Multichannel
pulse-coupled-neural-network-based color image seg-
mentation for object detection. Industrial electronics,
IEEE Transactons on, 59(8):3299–3308.
ICPRAM 2016 - International Conference on Pattern Recognition Applications and Methods
436