Fig. 4 is a surface plot of
2
H
(k)
(T) for a service
with
(k)
=
for all values of b. We see that an out-
of-synch service has much higher energy per bit than
the other, (in-synch) services when the network is
highly synchronised. As the degree of
synchronisation reduces or the diurnal cycle depth
reduces,
2
H
(k)
(T) reduces to that of the other services.
Figure 4: Surface plot for
2
H
(k)
(T) for a service (
) out of
phase with all other services in the network. Low values of
b correspond to all other flows across the network being
highly synchronised.
Comparing Fig. 3(a) and Fig. 4, we see that service
operators wishing to minimise the energy per bit of
their service will want to avoid being significantly
out-of-synch with the majority of services. This will
lead to service providers trying to synchronise their
services with everyone else. This, in turn, will lead
to deeper diurnal cycles and the resulting over-
dimensioning of the network, mentioned in Section
4, and consequential increase in energy
consumption.
5 APPLICATIONS
The expressions for the H metrics above are all
based on a pure sinusoidal diurnal cycle. In real
networks the diurnal cycle is not a pure sinusoid.
However, generalising these metrics to arbitrary
diurnal cycle profiles is relatively simple. For
1
H(t),
we just replace the sinusoid with the actual diurnal
cycle from collected traffic data. Because
2
H
j
(T) and
2
H
Ntwk
(T) only involve C
mean
, these are directly
applicable to any diurnal cycle profile.
The
2
H
(k)
(t) and
3
H metrics involve quantities
C
max
, C
min
, C and
. To generalise these metrics we
replace these values, in the metric definitions, with
their means over multiple diurnal cycles: C
max
D
,
C
min
D
, C
D
and
D
which can be extracted from
traffic data collected over multiple days. Where a
quantity is raised to a power, a, we replace X
a
by
(X
D
)
a
. Our discussion from now on can be applied
to these generalised forms.
As discussed above, metrics
1
H(t) and
2
H(T) are
already widely used where-as the
3
H(T) metric is
not. The advantage provided by the
3
H(T) metric is
that it quantifies the impact of the shape of the
diurnal cycle and its relationship to other traffic
flows (via C
max
, C
min
and
). This enables us to
quantify the impact of changing traffic profiles on
energy efficiency of networks and services.
Although the energy efficiency metrics have
primarily been created to provide a quantitative
measure of “energy efficiency” (ITU-T 2012 (a))(
Coroama, V. Hilty, L. 2014), they have been also
used to estimate the power consumption of
equipment, networks and services (Baliga, J., et al.
2009)(Van Heggegham, W., et al.,
2012)(Vishwanath, A., et al. 2015). We will now
consider some issues with these applications
5.1 Deployed Networks
The application of the metrics above in real
networks can be very problematic due to
unavailability of or difficulty in attainting the
required data. In particular, evaluating these metrics
for a network or service may require collection of a
significant amount of data not readily available.
Therefore approximations for the metrics can make
evaluation easier, although possibly at the cost of
reduced accuracy. Also, the inter-relationships
between the metrics may allow the data collected for
one metric to be used to evaluate another.
Using (26) we can show that
2
1
idle
Ntwk hops E
E
P
HN E
C
(35)
where N
hops
is the mean number of hops for service
traffic across the network. This form aligns with the
expressions for edge and core network energy
efficiency in (Baliga, J., et al. 2009)(Van
Heggegham, W., et al., 2012).
As discussed above, the simulation results show
the
2
H metric for a network is approximately equal
to the mean
2
H metric across the services, that is:
2
H
Ntwk
(T)
2
H
(k)
(T)
(S)
. The results also show the
variance
(S)
of the services satisfies
(S)
(
X
H
(k)
(T)) < 0.1
X
H
(k)
(T)
(S)
. This means that, to a
first order approximation, provided all the services
in the network are roughly synchronised to the same
degree (i.e. no services are significantly out of
synchronisation with the other services), we have
22
k
Ntwk
HT H T
(36)