REFERENCES
Amgoud, L. and Prade, H. (2012). Can AI models capture
natural language argumentation? IJCINI, 6(3):19–32.
Bar-Haim, R., Dagan, I., Greental, I., and Shnarch, E.
(2007). Semantic inference at the lexical-syntactic
level. In AAAI, pages 871–876.
Berant, J., Dagan, I., Adler, M., and Goldberger, J.
(2012). Efficient tree-based approximation for entail-
ment graph learning. In ACL (1), pages 117–125.
Berant, J., Dagan, I., and Goldberger, J. (2010). Global
learning of focused entailment graphs. In ACL, pages
1220–1229.
Brewka, G., Strass, H., Ellmauthaler, S., Wallner, J. P., and
Woltran, S. (2013). Abstract dialectical frameworks
revisited. In IJCAI.
Brewka, G. and Woltran, S. (2010). Abstract dialectical
frameworks. In KR.
Brewka, G. and Woltran, S. (2014). GRAPPA: A semanti-
cal framework for graph-based argument processing.
In Schaub, T., Friedrich, G., and O’Sullivan, B., edi-
tors, ECAI 2014 - 21st European Conference on Arti-
ficial Intelligence, 18-22 August 2014, Prague, Czech
Republic - Including Prestigious Applications of Intel-
ligent Systems (PAIS 2014), volume 263 of Frontiers
in Artificial Intelligence and Applications, pages 153–
158. IOS Press.
Cabrio, E. and Villata, S. (2012). Natural language argu-
ments: A combined approach. In ECAI, pages 205–
210.
Cabrio, E. and Villata, S. (2013). A natural language bipo-
lar argumentation approach to support users in on-
line debate interactions. Argument & Computation,
4(3):209–230.
Carenini, G. and Moore, J. D. (2006). Generating
and evaluating evaluative arguments. Artif. Intell.,
170(11):925–952.
Cayrol, C. and Lagasquie-Schiex, M.-C. (2013). Bipolar-
ity in argumentation graphs: Towards a better under-
standing. Int. J. Approx. Reasoning, 54(7):876–899.
Ches
˜
nevar, C. I. and Maguitman, A. (2004). An argumen-
tative approach to assessing natural language usage
based on the web corpus. In ECAI, pages 581–585.
Dagan, I., Dolan, B., Magnini, B., and Roth, D. (2009).
Recognizing textual entailment: Rational, evalua-
tion and approaches. Natural Language Engineering
(JNLE), 15(Special Issue 04):i–xvii.
Dung, P. (1995). On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artif. Intell.,
77(2):321–358.
Dunne, P. E., Hunter, A., McBurney, P., Parsons, S., and
Wooldridge, M. (2011). Weighted argument systems:
Basic definitions, algorithms, and complexity results.
Artif. Intell., 175(2):457–486.
Feng, V. W. and Hirst, G. (2011). Classifying arguments by
scheme. In ACL, pages 987–996.
Gabbriellini, S. and Santini, F. (2015). A micro study on
the evolution of arguments in amazon.com’s reviews.
In Chen, Q., Torroni, P., Villata, S., Hsu, J. Y., and
Omicini, A., editors, PRIMA 2015: Principles and
Practice of Multi-Agent Systems - 18th International
Conference, Bertinoro, Italy, October 26-30, 2015,
Proceedings, volume 9387 of Lecture Notes in Com-
puter Science, pages 284–300. Springer.
Gabbriellini, S. and Torroni, P. (2012). Large scale agree-
ments via microdebates. In Ossowski, S., Toni, F., and
Vouros, G. A., editors, Proceedings of the First Inter-
national Conference on Agreement Technologies, AT
2012, Dubrovnik, Croatia, October 15-16, 2012, vol-
ume 918 of CEUR Workshop Proceedings, pages 366–
377. CEUR-WS.org.
Gabbriellini, S. and Torroni, P. (2013a). Arguments in so-
cial networks. In Gini, M. L., Shehory, O., Ito, T.,
and Jonker, C. M., editors, International conference
on Autonomous Agents and Multi-Agent Systems, AA-
MAS ’13, Saint Paul, MN, USA, May 6-10, 2013,
pages 1119–1120. IFAAMAS.
Gabbriellini, S. and Torroni, P. (2013b). Netarg: an agent-
based social simulator with argumentative agents. In
AAMAS, pages 1365–1366.
Gordon, T., Prakken, H., and Walton, D. (2007). The
carneades model of argument and burden of proof. Ar-
tif. Intell., 171(10-15):875–896.
Heras, S., Atkinson, K., Botti, V. J., Grasso, F., Juli
´
an, V.,
and McBurney, P. (2013). Research opportunities for
argumentation in social networks. Artif. Intell. Rev.,
39(1):39–62.
Kouylekov, M. and Negri, M. (2010). An open-source pack-
age for recognizing textual entailment. In ACL (Sys-
tem Demonstrations), pages 42–47.
Leite, J. and Martins, J. (2011). Social abstract argumenta-
tion. In IJCAI, pages 2287–2292.
Lin, D. and Pantel, P. (2001). Discovery of inference rules
for question answering. Natural Language Engineer-
ing, 7:343–360.
Lippi, M. and Torroni, P. (2015). Context-independent
claim detection for argument mining. In Yang, Q. and
Wooldridge, M., editors, Proceedings of the Twenty-
Fourth International Joint Conference on Artificial In-
telligence, IJCAI 2015, Buenos Aires, Argentina, July
25-31, 2015, pages 185–191. AAAI Press.
Mehdad, Y., Carenini, G., Ng, R. T., and Joty, S. R. (2013).
Towards topic labeling with phrase entailment and ag-
gregation. In HLT-NAACL, pages 179–189.
Moens, M.-F., Boiy, E., Palau, R. M., and Reed, C. (2007).
Automatic detection of arguments in legal texts. In
ICAIL, pages 225–230.
Rahwan, I., Banihashemi, B., Reed, C., Walton, D., and Ab-
dallah, S. (2011). Representing and classifying argu-
ments on the semantic web. Knowledge Eng. Review,
26(4):487–511.
Reed, C. and Rowe, G. (2004). Araucaria: Software for
argument analysis, diagramming and representation.
International Journal on Artificial Intelligence Tools,
13(4):961–980.
Stern, A. and Dagan, I. (2011). A confidence model for
syntactically-motivated entailment proofs. In RANLP,
pages 455–462.
ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence
94