ACKNOWLEDGEMENTS
This work was carried out with the financial support
of the Council for Scientific and Industrial Research
(CSIR) and the Electrical and Electronic
Engineering Department at the University of
Johannesburg, South Africa. We would also like to
thank the Synthetic Biology research group at the
CSIR for providing us with real microscopy images.
REFERENCES
Allalou, A., Pinidiyaarachchi, A. and Wählby, C. (2010)
'Robust signal detection in 3D fluorescence
microscopy ', Cytometry, vol. 77A, no. 1, pp. 86-96.
Carter, B.C., Shubeita, G.T. and Gross, S.P. (2005)
'Tracking single particles: a user-friendly quantitative
evaluation', Physical Biology, vol. 2, no. 1, pp. 60-72.
Cheezum, M.K., Walker, W.F. and Guilford, W.H. (2001)
'Quantitative comparison of algorithms for tracking
single fluorescent particle', Biophysical Journal, vol.
81, pp. 2378-2388.
Chenouard, N. (2015) Particle tracking benchmark
generator, [Online], Available:
http://icy.bioimageanalysis.org/plugin/Particle_trackin
g_benchmark_generator [1 September 2015].
Chenouard, N., Ihor, S., de Chaumont, F., Maska, M.,
Sbalzarini, I.F., Gong, Y., Cardinale, J., Carthel, C.,
Coraluppi, S., Winter, M., Cohen, A.R., Godinez,
W.J., Rohr, K., Kalaidzidis, Y., Liang, L., Duncan, J.,
Shen, H., Xu, Y., Magnusson, K.E., Jalden, J. et al.
(2014) 'Objective comparison of particle tracking
methods', Nature Methods, vol. 11, no. 3, pp. 281-290.
Crocker, J.C. and Grier, D.G. (1996) 'Methods of Digital
Video Microscopy for Colloidal Studies', Journal of
Colloid and Interface Science 179, pp. 298-310.
Feng, L., Xu, Y., Yang, Y. and Zheng, X. (2011) 'Multiple
dense particle tracking in fluorescence microscopy
images based on multidimensional assignment',
Journal of Structural Biology, vol. 173, pp. 219-228.
Genovesio, A., Liendl, T., Emiliana, V., Parak, W.J.,
Coppey-Moisan, M. and Olivo-Marin, J.-C. (2006)
'Multiple particle tracking in 3d+t microscopy:
Method and application to the tracking of endocytosed
quantum dots', IEEE Transactions on Image
Processing, vol. 15, no. 5, pp. 1062-1070.
Lakadamyali, M., Rust, M.R., Babcock, H.P. and Zhuang,
X. (2003) 'Visualizing infection of individual
influenza viruses', Proceedings of the National
Academy of Science of the United States of America,
9280-9285.
Olivo-Marin, J.-C. (2008) 'Extraction of spots in biological
images using multiscale products', Pattern
Recognition, vol. 35, no. 9, pp. 1989-1996.
Rezatifighi, S.H., Pitkeathly, W.T., Goud, S., Hartley, R.,
Mele, K., Hughes, W.E. and Burchfield, J.G. (2013) 'A
framework for generating realistic synthetic sequences
of total internal reflection fluorescence microscopy
images', 10th IEEE International Symposium on
Biomedical Imaging, 157-160.
Ruusuvuori, P., Äijö, T., Chowdhury, S., Garmaendia-
Torres, C., Selinummi, J., Birbaumer, M., Dudley,
A.M., Pelkmans, L. and Yli-Harja, O. (2010)
'Evaluation of methods for detection of fluorescence
labeled subcellular objects in microscope images',
BMC Bioinformatics, vol. 11, pp. 1-17.
Ruusuvuori, P., Lehmussola, A., Selinummi, J., Rajala, T.,
Huttunen, H. and Yli-Harja, O. (2008) 'Benchmark set
of synthetic images for validating cell image analysis
algorithms', Proceedings of the 16th European Signal
Processing Conference, EUSIPCO.
Sbalzarini, I.F. and Koumoutsakos, P. (2005) 'Feature
Point Tracking and Trajectory Analysis for Video
Imaging in Cell Biology', Journal of Structural
Biology, vol. 151, no. 2, pp. 182-195.
Smal, I. (2015) Synthetic data generator
, September,
[Online], Available:
http://smal.ws/wp/software/synthetic-data-generator/.
Smal, I., Loog, M., Niessen, W. and Meijering, E. (2010)
'Quantitative comparison of spot detection methods in
fluorescence microscopy', IEEE Trans on Medical
Imaging, vol. 29, no. 2, pp. 282-301.
Smal, I., Meijering, E., Draegenstein, K., Galjart, N.,
Grigoriev, I., Akhmanova, A., van Royen, M.,
Houtsmuller, A.B. and Niessen, W. (2008) 'Multiple
object tracking in molecular bioimaging by Rao-
Blackwellized marginal particle filtering', Medical
Image Analysis , vol. 12, no. 6, pp. 764-777.
Vincent, L. (1993) 'Morphological grayscale
reconstruction in image analysis: Applications and
efficient algorithms ', IEEE Trans Image Process, vol.
2, pp. 176-201.
Yoon, J.W., Bruckbauer, A., Fitzgerald, W.J. and
Klenerman, D. (2008) 'Bayesian inference for
improved single molecule fluorescence tracking',
Biophysical Journal, vol. 94, pp. 4932-4947.
Zhang, B., Zerubia, J. and Olivo-Marin, J.-C. (2007)
'Gaussian approximations of fluorescence microscope
PSF models', Applied Optics, vol. 46, no. 10, pp. 1-34.
APPENDIX-A
Spot Detection Methods
Isotropic Undecimated Wavelet Transform
The method of IUWT was proposed in (Olivo-
Marin, 2008) for the detection of spots in biological
images. The algorithm is based on the assumption
that spots will be present at each scale of wavelet
decomposition and thus will appear in the multiscale
product. The ́ trous wavelet transform step is based
on the convolution of the image , row by row
and column by column with a symmetric low pass