REFERENCES
Biau, G. and Fischer, A. (2012). Parameter selection
for principal curves. IEEE Trans. Inf. Theory,
58(3):1924–1939.
Bishop, C. M. (2006). Mixture Models and EM. In Pat-
tern Recognit. Mach. Learn., chapter 9, pages 423–
460. Springer, New York, NY, USA.
Brunsdon, C. (2007). Path estimation from GPS tracks. In
Proc. 9th Int. Conf. GeoComputation, Maynooth, Ire-
land.
Cao, L., Luo, J., Gallagher, A., Jin, X., Han, J., and Huang,
T. S. (2010). A worldwide tourism recommendation
system based on geotagged web photos. In 2010
IEEE Int. Conf. Acoust. Speech Signal Process., pages
2274–2277, Dallas, Texas, USA. IEEE.
Feng, T. and Timmermans, H. J. P. (2013). Map matching of
GPS data with Bayesian belief networks. Proc. East.
Asia Soc. Transp. Stud., 9.
Giannotti, F., Nanni, M., Pedreschi, D., and Pinelli, F.
(2007). Trajectory pattern mining. In Proc. 13th
ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.
(KDD ’07), pages 330–339, San Jose, California,
USA. ACM.
Goh, C. Y., Dauwels, J., Mitrovic, N., Asif, M. T., Oran,
A., and Jaillet, P. (2012). Online map-matching based
on Hidden Markov model for real-time traffic sensing
applications. In 15th Int. IEEE Conf. Intell. Transp.
Syst., pages 776 – 781, Anchorage, Alaska, USA.
IEEE.
Gr
¨
onroos, S.-A., Virpioja, S., Smit, P., and Kurimo,
M. (2014). Morfessor FlatCat: An HMM-based
method for unsupervised and semi-supervised learn-
ing of morphology. In Proc. COLING 2014, 25th Int.
Conf. Comput. Linguist. Tech. Pap., pages 1177–1185,
Dublin, Ireland.
Hao, P., Boriboonsomsin, K., Wu, G., and Barth, M. (2014).
Probabilistic model for estimating vehicle trajectories
using sparse mobile sensor data. In 2014 IEEE 17th
Int. Conf. Intell. Transp. Syst. (ITSC ’14), pages 1363–
1368, Qingdao, China. IEEE.
Karagiorgou, S. and Pfoser, D. (2012). On vehicle tracking
data-based road network generation. In Proc. 20th Int.
Conf. Adv. Geogr. Inf. Syst. (SIGSPATIAL ’12), pages
89–98, Redondo Beach, California. ACM.
Kinoshita, A., Takasu, A., and Adachi, J. (2015). Real-time
traffic incident detection using a probabilistic topic
model. Inf. Syst., 54:169–188.
Monreale, A., Pinelli, F., Trasarti, R., and Giannotti, F.
(2009). WhereNext: A location predictor on trajectory
pattern mining. In Proc. 15th ACM SIGKDD Int. Conf.
Knowl. Discov. Data Min. (KDD ’09), pages 637–646,
Paris, France. ACM.
Sankararaman, S., Agarwal, P. K., Mølhave, T., Pan, J.,
and Boedihardjo, A. P. (2013). Model-driven match-
ing and segmentation of trajectories. In Proc. 21st
ACM SIGSPATIAL Int. Conf. Adv. Geogr. Inf. Syst.
(SIGSPATIAL ’13), pages 234–243, Orlando, Florida.
ACM.
Schnitzler, F., Artikis, A., Weidlich, M., Boutsis, I.,
Liebig, T., Piatkowski, N., Bockermann, C., Morik,
K., Kalogeraki, V., Marecek, J., Gal, A., Mannor,
S., Kinane, D., and Gunopulos, D. (2014). Het-
erogeneous stream processing and crowdsourcing for
traffic monitoring: Highlights. In Proc. Eur. Conf.
Mach. Learn. Princ. Pract. Knowl. Discov. Databases
(ECML PKDD ’14), pages 520–523, Nancy, France.
Springer Berlin Heidelberg.
Wang, Y., Zheng, Y., and Xue, Y. (2014). Travel time esti-
mation of a path using sparse trajectories. In Proc.
20th ACM SIGKDD Int. Conf. Knowl. Discov. data
Min. (KDD ’14), pages 25–34, New York, New York,
USA. ACM.
Wei, H., Wang, Y., Forman, G., Zhu, Y., and Guan, H.
(2012). Fast Viterbi map matching with tunable
weight functions. In Proc. 20th Int. Conf. Adv. Geogr.
Inf. Syst. (SIGSPATIAL ’12), pages 613–616, Redondo
Beach, California. ACM.
Yang, Q., Wu, G., Boriboonsomsin, K., and Barth, M.
(2013). Arterial roadway travel time distribution es-
timation and vehicle movement classification using a
modified Gaussian mixture model. In 16th Int. IEEE
Conf. Intell. Transp. Syst. (ITSC ’13), pages 681–685,
The Hague, The Netherlands. IEEE.
Yang, W.-S., Cheng, H.-C., and Dia, J.-B. (2008). A
location-aware recommender system for mobile shop-
ping environments. Expert Syst. Appl., 34(1):437–
445.
Yu, S.-Z. and Kobayashi, H. (2003). A hidden semi-Markov
model with missing data and multiple observation se-
quences for mobility tracking. Signal Processing,
83:235–250.
Zheng, Y., Chen, Y., Li, Q., Xie, X., and Ma, W.-Y. (2010a).
Understanding transportation modes based on GPS
data for web applications. ACM Trans. Web, 4(1):1:1–
1:36.
Zheng, Y., Li, Q., Chen, Y., Xie, X., and Ma, W.-Y. (2008).
Understanding mobility based on GPS data. In Proc.
10th Int. Conf. Ubiquitous Comput. (UbiComp ’08),
pages 312–321, Seoul, Korea. ACM.
Zheng, Y., Xie, X., and Ma, W.-Y. (2010b). GeoLife: A
collaborative social networking service among user,
location and trajectory. Bull. Tech. Comm. Data Eng.,
33(2):32–39.
Zheng, Y., Zhang, L., Xie, X., and Ma, W.-Y. (2009). Min-
ing interesting locations and travel sequences from
GPS trajectories. In Proc. 18th Int. Conf. World Wide
Web (WWW ’09), pages 791–800, Madrid, Spain.
ACM.
Zhu, X. and Goldberg, A. B. (2009). Introduction to Semi-
Supervised Learning. Morgan & Claypool.
ICPRAM 2016 - International Conference on Pattern Recognition Applications and Methods
262