larger number of related outputs giving a richer GP
model.
Aircraft flight domain can be divided into various
cluster of maneuvers. Each cluster of maneuvers has
a specific set of features and mathematically mod-
elled behaviour, which can also be seen as domain
knowledge. Recent advancements in approximate in-
ference of GP such as “Distributed Gaussian Process”
(Deisenroth and Ng, 2015) distribute the input do-
main into several clusters. Such kind of approximate
inference technique should be explored in the future
for our kind of dataset. Future work deals with han-
dling clustered input space with individual features.
REFERENCES
Alvarez, M. and Lawrence, N. D. (2009). Sparse convolved
gaussian processes for multi-output regression. In
Koller, D., Schuurmans, D., Bengio, Y., and Bottou,
L., editors, Advances in Neural Information Process-
ing Systems 21, pages 57–64. Curran Associates, Inc.
Alvarez, M. A., Luengo, D., and Lawrence, N. D. (2009).
Latent force models. In Dyk, D. A. V. and Welling,
M., editors, AISTATS, volume 5 of JMLR Proceed-
ings, pages 9–16. JMLR.org.
´
Alvarez, M. A., Luengo, D., Titsias, M. K., and Lawrence,
N. D. (2010). Efficient multioutput gaussian processes
through variational inducing kernels. In Teh, Y. W.
and Titterington, D. M., editors, AISTATS, volume 9
of JMLR Proceedings, pages 25–32. JMLR.org.
Bonilla, E., Chai, K. M., and Williams, C. (2008). Multi-
task gaussian process prediction. In Platt, J., Koller,
D., Singer, Y., and Roweis, S., editors, Advances
in Neural Information Processing Systems 20, pages
153–160. MIT Press, Cambridge, MA.
Boyle, P. and Frean, M. (2005). Dependent gaussian pro-
cesses. In In Advances in Neural Information Pro-
cessing Systems 17, pages 217–224. MIT Press.
Constantinescu, E. M. and Anitescu, M. (2013). Physics-
based covariance models for gaussian processes with
multiple outputs. International Journal for Uncer-
tainty Quantification, 3.
Deisenroth, M. P. and Ng, J. W. (2015). Distributed gaus-
sian processes. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, ICML 2015,
Lille, France, 6-11 July 2015, pages 1481–1490.
Quionero-candela, J., Rasmussen, C. E., and Herbrich, R.
(2005). A unifying view of sparse approximate gaus-
sian process regression. Journal of Machine Learning
Research, 6:2005.
Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian
Processes for Machine Learning (Adaptive Computa-
tion and Machine Learning). The MIT Press.
Snelson, E. and Ghahramani, Z. (2006). Sparse gaussian
processes using pseudo-inputs. In ADVANCES IN
NEURAL INFORMATION PROCESSING SYSTEMS,
pages 1257–1264. MIT press.
Solak, E., Murray-smith, R., Leithead, W. E., Leith, D. J.,
and Rasmussen, C. E. (2003). Derivative observations
in gaussian process models of dynamic systems. In
Becker, S., Thrun, S., and Obermayer, K., editors, Ad-
vances in Neural Information Processing Systems 15,
pages 1057–1064. MIT Press.
Stein, M. L. (1999). Interpolation of Spatial Data: Some
Theory for Kriging. Springer, New York.
Titsias, M. K. (2009). Variational learning of inducing vari-
ables in sparse gaussian processes. In In Artificial In-
telligence and Statistics 12, pages 567–574.
Vanhatalo, J., Riihim
¨
aki, J., Hartikainen, J., Jyl
¨
anki, P.,
Tolvanen, V., and Vehtari, A. (2013). Gpstuff:
Bayesian modeling with gaussian processes. J. Mach.
Learn. Res., 14(1):1175–1179.
Sparse Physics-based Gaussian Process for Multi-output Regression using Variational Inference
445