verse populations to investigate possible differences
between regions and countries. Also, once the wizard
is developed, evaluation of the approach can be pre-
formed using A/B testing and measuring parameters
such as the dropout rate.
REFERENCES
Abbasi, A., Peelen, L. M., Corpeleijn, E., van der Schouw,
Y. T., Stolk, R. P., Spijkerman, A. M., Moons, K. G.,
Navis, G., Bakker, S. J., Beulens, J. W., et al. (2012).
Prediction models for risk of developing type 2 di-
abetes: systematic literature search and independent
external validation study. Bmj, 345:e5900.
Adler-Milstein, J., DesRoches, C. M., Furukawa, M. F.,
Worzala, C., Charles, D., Kralovec, P., Stalley, S., and
Jha, A. K. (2014). More than half of us hospitals have
at least a basic ehr, but stage 2 criteria remain chal-
lenging for most. Health Affairs, pages 10–1377.
Baan, C. A., Ruige, J. B., Stolk, R. P., Witteman, J., Dekker,
J. M., Heine, R. J., and Feskens, E. (1999). Per-
formance of a predictive model to identify undiag-
nosed diabetes in a health care setting. Diabetes care,
22(2):213–219.
Beckjord, E. B., Rechis, R., Nutt, S., Shulman, L., and
Hesse, B. W. (2011). What do people affected by
cancer think about electronic health information ex-
change? results from the 2010 livestrong electronic
health information exchange survey and the 2008
health information national trends survey. Journal of
Oncology Practice, 7(4):237–241.
D
¨
ornyei, Z. and Taguchi, T. (2010). Questionnaires in sec-
ond language research: Construction, administration,
and processing. Routledge.
Ferreira, A. M., Tziortzios, C., and Shafahi, M. (2011).
Passwords awareness in the academic world. Tech-
nical report, University of Amsterdam.
Fink, A. (2012). How to conduct surveys: A step-by-step
guide. Sage Publications.
Harris, M. I. (2001). Racial and ethnic differences in health
care access and health outcomes for adults with type
2 diabetes. Diabetes care, 24(3):454–459.
Hartemink, N., Boshuizen, H. C., Nagelkerke, N. J., Jacobs,
M. A., and van Houwelingen, H. C. (2006). Com-
bining risk estimates from observational studies with
different exposure cutpoints: a meta-analysis on body
mass index and diabetes type 2. American journal of
epidemiology, 163(11):1042–1052.
Hivert, M.-F., Grant, R. W., Shrader, P., and Meigs, J. B.
(2009). Identifying primary care patients at risk for
future diabetes and cardiovascular disease using elec-
tronic health records. BMC health services research,
9(1):170.
Jha, A. K., DesRoches, C. M., Campbell, E. G., Donelan,
K., Rao, S. R., Ferris, T. G., Shields, A., Rosenbaum,
S., and Blumenthal, D. (2009). Use of electronic
health records in us hospitals. New England Journal
of Medicine, 360(16):1628–1638.
Khan, A., Doucette, J. A., Cohen, R., and Lizotte, D.
(2012). A hybrid design for medical decision support
using data mining to impute missing data.
Knowler, W. C., Barrett-Connor, E., Fowler, S. E., Ham-
man, R. F., Lachin, J. M., Walker, E. A., and Nathan,
D. M. (2002). Reduction in the incidence of type 2
diabetes with lifestyle intervention or metformin. The
New England journal of medicine, 346(6):393.
Lindstr
¨
om, J. and Tuomilehto, J. (2003). The diabetes risk
score a practical tool to predict type 2 diabetes risk.
Diabetes care, 26(3):725–731.
Mayo Clinic (2015). Risk factors type 2 diabetes
risk factors. http://www.mayoclinic.org/diseases-
conditions/type-2-diabetes/basics/risk-factors/con-
20031902. Accessed: 2015, May 21.
Montonen, J., Knekt, P., J
¨
arvinen, R., and Reunanen, A.
(2004). Dietary antioxidant intake and risk of type 2
diabetes. Diabetes Care, 27(2):362–366.
Pickard, K. T. and Swan, M. (2014). Big desire to share big
health data: A shift in consumer attitudes toward per-
sonal health information. In 2014 AAAI Spring Sym-
posium Series.
Prince, S. A., Adamo, K. B., Hamel, M. E., Hardt, J., Gor-
ber, S. C., and Tremblay, M. (2008). A comparison of
direct versus self-report measures for assessing phys-
ical activity in adults: a systematic review. Interna-
tional Journal of Behavioral Nutrition and Physical
Activity, 5(1):56.
Rijksinstituut voor Volksgezondheid en Milieu (2013).
Welke factoren beinvloeden de kans op diabetes mel-
litus? welke factoren benvloeden de kans op diabetes
mellitus? - nationaal kompas volksgezondheid. http://
www.nationaalkompas.nl/gezondheid-en-ziekte/
ziekten-en-aandoeningen/endocriene-voedings-en-
stofwisselingsziekten-en-immuniteitsstoornissen/
diabetes-mellitus/welke-factoren-beinvloeden-de-
kans-op-diabetes-mellitus. Accessed: 2015, May 21.
Shephard, R. J. (2003). Limits to the measurement of habit-
ual physical activity by questionnaires. British journal
of sports medicine, 37(3):197–206.
Teixeira, P. A., Gordon, P., Camhi, E., and Bakken, S.
(2011). Hiv patients willingness to share personal
health information electronically. Patient education
and counseling, 84(2):e9–e12.
Tirosh, A., Shai, I., Afek, A., Dubnov-Raz, G., Ayalon, N.,
Gordon, B., Derazne, E., Tzur, D., Shamis, A., Vinker,
S., et al. (2011). Adolescent bmi trajectory and risk of
diabetes versus coronary disease. New England Jour-
nal of Medicine, 364(14):1315–1325.
Wei, J.-N., Sung, F.-C., Lin, C.-C., Lin, R.-S., Chiang,
C.-C., and Chuang, L.-M. (2003). National surveil-
lance for type 2 diabetes mellitus in taiwanese chil-
dren. Jama, 290(10):1345–1350.
World Health Organization (2014). Global health estimates:
Deaths by cause, age, sex and country, 2000-2012.
Geneva, WHO.
Xierali, I. M., Hsiao, C.-J., Puffer, J. C., Green, L. A.,
Rinaldo, J. C., Bazemore, A. W., Burke, M. T., and
Phillips, R. L. (2013). The rise of electronic health
record adoption among family physicians. The Annals
of Family Medicine, 11(1):14–19.
Zhang, J. and Zhao, Y. (2013). A user term visualization
analysis based on a social question and answer log.
Information Processing & Management, 49(5):1019–
1048.
BioMed Wizard - An Approach for Gathering Personal Risk Factor Data
305