An Unobtrusive Wearable Device for Ambulatory Monitoring of Pulse Transit Time to Estimate Central Blood Pressure

Hanne O. Austad, Jon Vedum, Morten H. Røed, Steffen Dalgard, Tomas Brødreskift, Anders E. Liverud, Frode Strisland, Trine M. Seeberg

2016

Abstract

There is a clinical need for improved ambulatory, frequent and unobtrusive monitoring of blood pressure and cardiac parameters like systolic time intervals. Truly unobtrusive wearable devices combining impedance cardiography with other sensors may be one possible solution. The IsenseU-BP+ device presented in this article measures single channel ECG, impedance cardiography and photo plethysmography at the chest. The device also measures activity and posture, as well as skin temperature. In this study, we report on the possibility to use these signals to measure pulse transit time for estimating blood pressure changes. Six subjects has been tested. Four of them showed good correlation between PTT and mean arterial pressure while two of the subjects had too low signal to noise ratio in the photoplethysmography signal for good estimation of PTT. Thus these results show that the quality of the raw data is promising for calculating a pulse transit time that shows good coherence with mean arterial pressure.

References

  1. Budidha, K. and Kyriacou, P. A. (2014) 'Investigation of Pulse Transit Times utilizing multisite reflectance photoplethysmography under conditions of artificially induced peripheral vasoconstriction' (2014) Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, Chicago, IL, USA, 26-30 Aug. 2014, IEEE, pp.1965-1968.
  2. Buxi, D., Redouté, J-M. and Yuce, M. R. (2015) 'A survey on signals and systems in ambulatory blood pressure monitoring using pulse transit time' Physiological Measurement, 36(3), Available at: http://iopscience.iop.org/article/10.1088/0967- 3334/36/3/R1/pdf;jsessionid=E37F6D1B13B8EA4CD 9'D45CE2CAE5FC.c1.iopscience.cld.iop.org (Accessed: 4. Nov. 2015).
  3. Ilies, C., Grudev, G., Hedderich, J., Renner, J., Steinfath, M., Bein, B., Haake, N., Hanss, R. (2015), 'Comparison of a continuous noninvasive arterial pressure device with invasive measurements in cardiovascular postsurgical intensive care patients: a prospective observational study', European Journal of Anaesthesiologie, 32(1), pp20-28.
  4. Muehlsteff, J., Aubert, X. L. and Schuett, M. (2006), 'Cuffless estimation of systolic blood pressure for short effort bicycle tests: The prominent role of the pre-ejection period', Engineering in Medicine and Biology Society, 2006. EMBS 7806. 28th Annual International Conference of the IEEE, New York, NY, USA, 30 Aug.-3 Sept. 2006, IEEE, pp. 5088-5092.
  5. Muehlsteff, J., Aubert, X.L. and Morren, G. (2008) 'Continous Cuff-less Blood Pressure Monitoring based on the Pulse Arrival Time Apporch: The Impact of Posture' Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, Vancouver, BC, Canada, 20- 25 Aug. 2008, IEEE, pp. 1691-1694.
  6. Nichols, W. W. and O'Rourke, M. F. (2005) McDonald's Blood Flow in Arteries. London, U.K.: Oxford Univ. Press.
  7. O'Brien, E., Atkins, N., Stergiou, G., Karpettas, N., Parati, G., Asmar, R., Imai, Y, Wang, J., Mengden, T. and Shennan, A. (2010) 'European Society of Hypertension International Protocol revision 2010 for the validation of blood pressure measuring devices in adults', Blood Pressure Monitoring, 15(1), pp 23-38.
  8. Patterson, R. P. (2010) 'Impedance cardiography: What is the source of the signal? 'Journal of Physics: Conference Series', 224(1), available at : http://iopscience.iop.org/article/10.1088/1742- 6596/224/1/012118/pdf (Accessed: 4. Nov. 2015).
  9. PhysioFlow Hemodynamics Redefined, Available at: http://www.physioflow.com/ (Accessed: 26 Aug. 2015).
  10. Proença, J., Muehlsteff, J., Aubert, X. L. and Caravalho, P. (2010) 'Is Pulse Transit Time a good indicator of Blood Pressure changes during short physical exercise in a young population?78 Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, Buenos Aires, Argentinga, 31 Aug.-4 sept. 2010, IEEE, pp. 598-601.
  11. Rothwell, P. M., Howard, S. C., Dolan, E., O'Brien, E., Dobson, J. E., Dahlöf, B., Sever, P.S. and Poulter, N.R. (2010) 'Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension', Lancet, 375(9718), pp 895- 905.
  12. Solà, J., Proença, M., Ferrario, D., Porchet, J.-A., Falhi, A., Grossenbacher, O., Allemann, Y., Rimoldi, S. F. and Sartori, C. (2013) 'Noninvasive and Nonocclusive Blood Pressure Estimation Via a Chest Sensor', Biomedical Engineering, IEEE Transactions on, 60(12), pp 3505-3513.
  13. Solà, J., Chételat, O., Sartori, C., Allemann, Y. and Rimoldi, S. F. (2011) 'Chest Pulse-Wave Velocity: A Novel Approach to Assess Arterial Stiffness', Biomedical Engineering, IEEE Transactions on, 58(1), pp 215-223.
  14. Tan, K. H., Lai, F. O., Hwang, N. C. (2006) 'Measurement of cardiac output using Physio Flow with different positions of electrode placement', Singapore Med. Journal', 47(11), pp967-70.
  15. van Lien R., Schutte, N. M., Meijer, J.H. and de Geus, E. J. (2013) 'Estimated preejection period (PEP) based on the detection of the R-wave and dZ/dt-min peaks does not adequately reflect the actual PEP across a wide range of laboratory and ambulatory conditions', Int. J. Psychophysiol, 87(1), pp 60-69.
  16. ViSiMobile, Available at: http://www.visimobile.com/ (Accessed: 26 Aug. 2015).
  17. Wagner, J. Y., Negulescu, I., Schöfthaler, M., Hapfelmeier, A., Meidert, A. S., Huber, W., Schmid, R. M. and Saugel, B. (2015) 'Continuous noninvasive arterial pressure measurement using the volume clamp method: an evaluation of the CNAP device in intensive care unit patients', Journal of Clinical Monitoring and Computing , 29(6), pp 807-813.
  18. World Health Organization Global Health Observatory (GHO) data on raised blood pressure, Available at: http://www.who.int/gho/ncd/risk_factors/blood_pressu re_prevalence_text/en/ (Accessed: 26 Aug. 2015).
Download


Paper Citation


in Harvard Style

Austad H., Vedum J., Røed M., Dalgard S., Brødreskift T., Liverud A., Strisland F. and Seeberg T. (2016). An Unobtrusive Wearable Device for Ambulatory Monitoring of Pulse Transit Time to Estimate Central Blood Pressure . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 179-186. DOI: 10.5220/0005701401790186


in Bibtex Style

@conference{biodevices16,
author={Hanne O. Austad and Jon Vedum and Morten H. Røed and Steffen Dalgard and Tomas Brødreskift and Anders E. Liverud and Frode Strisland and Trine M. Seeberg},
title={An Unobtrusive Wearable Device for Ambulatory Monitoring of Pulse Transit Time to Estimate Central Blood Pressure},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2016)},
year={2016},
pages={179-186},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005701401790186},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2016)
TI - An Unobtrusive Wearable Device for Ambulatory Monitoring of Pulse Transit Time to Estimate Central Blood Pressure
SN - 978-989-758-170-0
AU - Austad H.
AU - Vedum J.
AU - Røed M.
AU - Dalgard S.
AU - Brødreskift T.
AU - Liverud A.
AU - Strisland F.
AU - Seeberg T.
PY - 2016
SP - 179
EP - 186
DO - 10.5220/0005701401790186