Lai, E. C. (2004). Predicting and validating microRNA
targets. Genome Biology, 5(9), 115. doi:10.1186/gb-
2004-5-9-115.
Lewis, B. P., Burge, C. B., and Bartel, D. P. (2005).
Conserved seed pairing, often flanked by adenosines,
indicates that thousands of human genes are microRNA
targets. Cell, 120(1), 15–20. doi:10.1016/
j.cell.2004.12.035.
Lewis, B. P., Shih, I., Jones-Rhoades, M. W., Bartel, D. P.,
and Burge, C. B. (2003). Prediction of mammalian
microRNA targets. Cell, 115(7), 787–798. Retrieved
from http://www.ncbi.nlm.nih.gov/pubmed/14697198.
Lian, H. (2012). On feature selection with principal
component analysis for one-class SVM. Pattern
Recognition Letters, 33(9), 1027–1031.
doi:10.1016/j.patrec.2012.01.019.
Lorena, L. H. N., Carvalho, A. C. P. L. F., and Lorena, A.
C. (2014). Filter Feature Selection for One-Class
Classification. Journal of Intelligent and Robotic
Systems, 1–17. doi:10.1007/s10846-014-0101-2.
Lytle, J. R., Yario, T. A., and Steitz, J. A. (2007). Target
mRNAs are repressed as efficiently by microRNA-
binding sites in the 5’ UTR as in the 3' UTR.
Proceedings of the National Academy of Sciences of the
United States of America, 104(23), 9667–9672.
doi:10.1073/pnas.0703820104.
Manevitz, L. M., and Yousef, M. (2002). One-Class SVMs
for Document Classification. The Journal of Machine
Learning Research, 2, 139–154. Retrieved from
http://dl.acm.org/citation.cfm?id=944808.
McCallum, A. K. (1996). Bow: A toolkit for statistical
language modeling, text retrieval, classification and
clustering. Retrieved from http://www.cs.cmu.edu/
~mccallum/bow.
Miranda, K. C., Huynh, T., Tay, Y., Ang, Y.-S., Tam, W.-
L., Thomson, A. M., … Rigoutsos, I. (2006). A pattern-
based method for the identification of MicroRNA
binding sites and their corresponding heteroduplexes.
Cell, 126(6), 1203–17. doi:10.1016/j.cell.2006.07.031.
Mitchell, T. (1997). Machine Learning.
Novak, K. (2006). Taking out the trash. Nature Reviews
Cancer, 6(2), 92–92. doi:10.1038/nrc1807.
Pavlidis, P., Weston, J., Jinsong, C., and Grundy, W. N.
(2001). Gene functional classification from
heterogeneous data. In Proceedings of the Fifth
International Conference on Computational Molecular
Biology (pp. 242–248). Retrieved from
https://noble.gs.washington.edu/papers/exp-phylo.pdf.
Quinlan, J. R. (1993). C4.5: programs for machine
learning. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.
Saetrom, O., Snøve, O., and Saetrom, P. (2005). Weighted
sequence motifs as an improved seeding step in
microRNA target prediction algorithms. RNA, 11(7),
995–1003. doi:10.1261/rna.7290705.
Schölkopf, B., Burges, C. J. C., and Smola, A. J. (1999).
Advances in Kernel Methods. Cambridge, MA: MIT
Press.
Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J.,
and Williamson, R. C. (2001). Estimating the Support
of a High-Dimensional Distribution. Neural Comp.,
13(7), 1443–1471.
Sethupathy, P., Corda, B., and Hatzigeorgiou, A. G. (2006).
TarBase: A comprehensive database of experimentally
supported animal microRNA targets. RNA, 12(2), 192–
7. doi:10.1261/rna.2239606.
Spinosa, E. J., and Carvalho, A. C. P. L. F. de. (2005).
Support vector machines for novel class detection in
Bioinformatics. Genetics and Molecular Research
[electronic Resource] : GMR., 4(3), 608–615.
Tax, D. M. J. (2001). One-class classification. Technical
University Delft. Retrieved from ISBN: 90-75691-05-x.
Tax, D. M. J. (2015). DDtools, the Data Description
Toolbox for Matlab.
Thadani, R., and Tammi, M. T. (2006). MicroTar:
predicting microRNA targets from RNA duplexes.
BMC Bioinformatics, 7 Suppl 5, S20.
doi:10.1186/1471-2105-7-S5-S20.
Thirion, B., and Faugeras, O. (2004). Feature
characterization in fMRI data: The Information
Bottleneck approach. Medical Image Analysis, 8(4),
403–419. doi:10.1016/j.media.2004.09.001.
Vapnik, V. N. (1995). The nature of statistical learning
theory. New York, New York, USA: Springer-Verlag.
Retrieved from http://dl.acm.org/
citation.cfm?id=211359.
Witten, I. H., Frank, E., and Hall, M. A. (2011).
Introduction to Weka. In Data Mining: Practical
Machine Learning Tools and Techniques (pp. 403–
406). Elsevier. doi:10.1016/B978-0-12-374856-
0.00010-9.
Xiao, F., Zuo, Z., Cai, G., Kang, S., Gao, X., and Li, T.
(2009). miRecords: an integrated resource for
microRNA-target interactions. Nucleic Acids Research,
37(Database issue), D105–10. doi:10.1093/nar/gkn851.
Xuan, P., Guo, M., Liu, X., Huang, Y., Li, W., and Huang,
Y. (2011). PlantMiRNAPred: efficient classification of
real and pseudo plant pre-miRNAs. Bioinformatics
(Oxford, England), 27(10), 1368–76.
doi:10.1093/bioinformatics/btr153.
Yan, X., Chao, T., Tu, K., Zhang, Y., Xie, L., Gong, Y., …
Peng, X. (2007). Improving the prediction of human
microRNA target genes by using ensemble algorithm.
FEBS Letters, 581(8), 1587–93. doi:10.1016/
j.febslet.2007.03.022.
Yousef, M., Jung, S., Kossenkov, A. V, Showe, L. C., and
Showe, M. K. (2007). Naïve Bayes for microRNA
target predictions--machine learning for microRNA
targets. Bioinformatics (Oxford, England), 23(22),
2987–92. doi:10.1093/bioinformatics/btm484.
Yousef, M., Jung, S., Showe, L. C., and Showe, M. K.
(2008). Learning from positive examples when the
negative class is undetermined--microRNA gene
identification. Algorithms for Molecular Biology, 3, 2.
doi:10.1186/1748-7188-3-2.
Yousef, M., Najami, N., and Khalifa, W. (2010). A
Comparison Study Between One-Class and Two-Class
Machine Learning for MicroRNA Target Detection.
Journal of Biomedical Science and Engineering.