hierarchical topological clustering. In ESANN, pages
19–24.
Dowling, J. E. (2007). The Great Brain Debate: Nature Or
Nurture? Princeton University Press.
Est
´
evez, P. A., Pr
´
ıncipe, J. C., and Zegers, P. (2012). Ad-
vances in Self-Organizing Maps: 9th International
Workshop, WSOM 2012 Santiago, Chile, December
12-14, 2012 Proceedings. Springer Science & Busi-
ness Media.
Fort, J.-C. (2006). Soms mathematics. Neural Networks,
19(6):812–816.
Fritzke, B. (1994). Growing cell structuresa self-organizing
network for unsupervised and supervised learning.
Neural networks, 7(9):1441–1460.
Fritzke, B. (1995). Growing grida self-organizing net-
work with constant neighborhood range and adapta-
tion strength. Neural Processing Letters, 2(5):9–13.
Fritzke, B. et al. (1995). A growing neural gas network
learns topologies. Advances in neural information
processing systems, 7:625–632.
Han, H.-G. and Qiao, J.-F. (2013). A structure optimisation
algorithm for feedforward neural network construc-
tion. Neurocomputing, 99:347–357.
Hodge, V. J. and Austin, J. (2001). Hierarchical growing
cell structures: TreeGCS. Knowledge and Data Engi-
neering, IEEE Transactions on, 13(2):207–218.
Islam, M., Sattar, A., Amin, F., Yao, X., and Murase, K.
(2009). A new adaptive merging and growing algo-
rithm for designing artificial neural networks. Sys-
tems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, 39(3):705–722.
Kohonen, T. (1981). Automatic formation of topological
maps of patterns in a self-organizing system.
Kohonen, T. (1988). The’neural’phonetic typewriter. Com-
puter, 21(3):11–22.
Kohonen, T. (1993). Things you haven’t heard about the
Self-Organizing Map. In Neural Networks, 1993.,
IEEE International Conference on, pages 1147–1156.
IEEE.
Kohonen, T. (2001). Self-organizing Maps, vol. 30 of
Springer Series in Information Sciences. Springer
Berlin.
Kohonen, T. (2012). Self-organization and associative
memory, volume 8. Springer.
Lagus, K., Honkela, T., Kaski, S., and Kohonen, T. (1999).
WEBSOM for textual data mining. Artificial Intelli-
gence Review, 13(5-6):345–364.
Lu, S.-y. (1990). Pattern classification using self-organizing
feature maps. In 1990 IJCNN International Joint Con-
ference on, pages 471–480.
Marsland, S., Shapiro, J., and Nehmzow, U. (2002). A self-
organising network that grows when required. Neural
Networks, 15(8):1041–1058.
Mulier, F. and Cherkassky, V. (1994). Learning rate sched-
ules for self-organizing maps. In Pattern Recognition,
1994. Vol. 2-Conference B: Computer Vision &
Image Processing., Proceedings of the 12th IAPR In-
ternational. Conference on, volume 2, pages 224–228.
IEEE.
Odri, S. V., Petrovacki, D. P., and Krstonosic, G. A. (1993).
Evolutional development of a multilevel neural net-
work. Neural Networks, 6(4):583–595.
Park, Y.-S., Tison, J., Lek, S., Giraudel, J.-L., Coste,
M., and Delmas, F. (2006). Application of a self-
organizing map to select representative species in mul-
tivariate analysis: A case study determining diatom
distribution patterns across France. Ecological Infor-
matics, 1(3):247 – 257. 4th International Conference
on Ecological Informatics.
Rauber, A., Merkl, D., and Dittenbach, M. (2002).
The growing hierarchical self-organizing map: ex-
ploratory analysis of high-dimensional data. Neural
Networks, IEEE Transactions on, 13(6):1331–1341.
Spanakis, G., Siolas, G., and Stafylopatis, A. (2012).
DoSO: a document self-organizer. Journal of Intel-
ligent Information Systems, 39(3):577–610.
Vesanto, J., Himberg, J., Alhoniemi, E., and Parhankangas,
J. (2000). SOM toolbox for Matlab 5. Citeseer.
Wedeen, V. J., Rosene, D. L., Wang, R., Dai, G., Mor-
tazavi, F., Hagmann, P., Kaas, J. H., and Tseng, W.-
Y. I. (2012). The geometric structure of the brain fiber
pathways. Science, 335(6076):1628–1634.
Yang, S.-H. and Chen, Y.-P. (2012). An evolutionary con-
structive and pruning algorithm for artificial neural
networks and its prediction applications. Neurocom-
puting, 86:140–149.
ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence
140