REFERENCES
A. Shoemaker, B. and R. Panchenko, A. (2007a). De-
ciphering protein-protein interactions. part i. exper-
imental techniques and databases. PLOS Comput.
Biol., 3(3):e42.
A. Shoemaker, B. and R. Panchenko, A. (2007b). Deci-
phering protein-protein interactions. part ii. computa-
tional methods to predict protein and domain interac-
tion partners. PLOS Comput. Biol., 3(3):e43.
Altschul, S., Gish, W., Miller, Myers, E., and J. Lipman, D.
(1990). Basic local alignment search tool. Molecular
Biology, 215:403–410.
Benso, A., Di Carlo, S., Ur Rehman, H., Politano, G.,
Savino, A., and Suravajhala, P. (2012). Using gnome
wide data for protein function prediction by exploit-
ing gene ontology relationships. pages 497–502. IEEE
International Conference on Automation Quality and
Testing Robotics (AQTR)., IEEE.
Benso, A., Di Carlo, S., Ur Rehman, H., Politano, G.,
Savino, A., and Suravajhala, P. (2013). A combined
approach for genome wide protein function annota-
tion/prediction. PROTEOME SCIENCE, 11(S1):1–
12. ISSN: 1477-5956.
Braun, P. and et al. (2009). An experimentally derived con-
fidence score for binary protein-protein interactions.
Nature Methods, 6:91 to 97.
Burger, L. and V. Nimwegen, E. (2008). Accurate pre-
diction of protein protein interactions from sequence
alignments using a bayesian method. Mol Syst Biol,
4:165.
C. Zhang, Q., Petrey, D., Norel, R., and Honig, B. (2010).
Protein interface conservation across structure space.
Proc. Natl Acad. Sci. USA, 107:10896–10901.
Deane, C. M., Salwinski, L., Xenarios, I., and Eisenberg,
D. (2002). Protein interactions: two methods for as-
sessment of the reliability of high throughput observa-
tions. . Mol. Cell. Proteomics, 1:349 to 356.
Espadaler, J., Romero, O., M. Jackson, R., and et al. (2005).
Prediction of protein-protein interactions using distant
conservation of sequence patterns and structure rela-
tionships. Oxford Journals, Volume 21, Issue 16:3360
–3368.
F. Xia, J., Han, K., and S. Huang, D. (2010). Sequence-
based prediction of protein-protein interactions by
means of rotation forest and autocorrelation descrip-
tor. Protein Pept Lett, 17(1):137–45.
Golovin, A. and Henrick, K. (2008). Msdmotif: exploring
protein sites and motifs. BMC Bioinformatics, 9:1–11.
Springer-Verlag Berlin Heidelberg.
Ito, T., Chiba, T., Ozawa, R., and et al. (2001). A com-
prehensive analysis of protein protein interactions in
saccharomyces cerevisiae. Proc Natl Acad Sci USA,
98:4569–74.
M. Berman, H., Westbrook, J., Feng, Z., Gilliland, G.,
N. Bhat, T., Weissig, H., N. Shindyalov, I., and E.
Bourne, P. (2000). The protein data bank. Nucleic
Acids Research, 28:235–242.
Madej, T., J. Lanczycki, C., Zhang, D., A. Thiessen,
P., C. Geer, R., M. Bauer, A., and H. Bryant, S.
(2013). Mmdb and vast+: tracking structural simi-
larities between macromolecular complexes. Nucleic
Acids Res., 42:(D1): D297–D303. [PubMed PMID:
24319143].
Mitrofanova, A., Pavlovic, V., and Mishra, B. (2011). Pre-
diction of protein functions with gene ontology and in-
terspecies protein homology data. IEEE/ACM Trans-
actions on Computational Biology and Bioinformat-
ics, 8 no. 3:775–784.
N. Pelletier, J., Arndt, K., Pluckthun, A., and et al. (1999).
An in vivo library versus library selection of opti-
mized protein protein interactions. Nat Biotechnol,
17:683–90.
R. Rhodes, D., A. Tomlins, S., and Varambally, S. (2005).
Probabilistic model of the human protein-protein in-
teraction network. Nature Biotechnology, 23:951 –
959.
Rigaut, G., Shevchenko, A., Rutz, B., and et al. (1999). A
generic protein purification method for protein com-
plex characterization and proteome exploration. Nat
Biotechnol, 17:1030–32.
Salwinski, L. and Eisenberg, D. (2003). Computational
methods of analysis of protein protein interactions.
Curr. Opin. Struct. Biol., 13:377 to 382.
Schweiger, R., Linial, M., and Linial, N. (2011). Gener-
ative probabilistic models for protein-protein interac-
tion network the biclique perspective. Oxford Jour-
nals, Volume 27.
Shatsky, M., Nussinov, R., and J. Wolfson, H. (2004). A
method for simultaneous alignment of multiple pro-
tein structures. PROTEINS: Structure, Function, and
Bioinformatics, 56:143–156.
Shen, J., Zhang, J., Luo, X., Zhu, W., Yu, K., and et al.
(2006). Predicting protein-protein interactions based
only on sequences information. Proceedings of the
National Academy of Sciences, vol. 104:4337–4341.
The UniProt Consortium (2015). Uniprot: a hub for protein
information. Nucleic Acids Res. 43: D204-D212.
Tuncbag, N., Gursoy, A., Nussinov, R., and Keskin, O.
(2011). Predicting protein-protein interactions on a
proteome scale by matching evolutionary and struc-
tural similarities at interfaces using prism. Nature Pro-
tocols, 06 NO.09:1341–1354.
Valencia, A. and Pazos, F. (2003). Prediction of protein-
protein interactions from evolutionary information.
Methods Biochem Anal, 44:411–26.
Wass, M., Fuentes, G., Pons, C., Pazos, F., and Valencia,
A. (2011). Towards the prediction of protein interac-
tion partners using physical docking. Mol. Syst. Biol.,
7:469.
You, Z. H., Chan, K. C. C., and Hu, P. (2015). Predict-
ing protein-protein interactions from primary protein
sequences using a novel multi-scale local feature rep-
resentation scheme and the random forest. PLoS ONE,
10(5).
Zhang, Q. C., Petrey, D., and et al. (2012). Structure based
prediction of protein-protein interactions on a genome
wide scale. Nature, 490(7421):556 to 60.
BIOINFORMATICS 2016 - 7th International Conference on Bioinformatics Models, Methods and Algorithms
244