Dewhirst, O., Angarita-Jaimes, N., Simpson, D., Allen, R.,
and Newland, P. (2013). A system identification anal-
ysis of neural adaptation dynamics and nonlinear re-
sponses in the local reflex control of locust hind limbs.
Journal of Computational Neuroscience, 34(1):39–58.
Endo, W., Santos, F., Simpson, D., Maciel, C., and New-
land, P. (2015). Delayed mutual information infers
patterns of synaptic connectivity in a proprioceptive
neural network. Journal of Computational Neuro-
science, 38(2):427–438.
Harrell, F. E. (2013). Regression modeling strategies: with
applications to linear models, logistic regression, and
survival analysis. Springer Science & Business Me-
dia.
Ito, S., Hansen, M. E., Heiland, R., Lumsdaine, A., Litke,
A. M., and Beggs, J. M. (2011). Extending transfer
entropy improves identification of effective connectiv-
ity in a spiking cortical network model. PLoS ONE,
6(11):e27431.
Jegadeesan, R., Thakor, N., and Yen, S. C. (2015). Wire-
less for peripheral nerve prosthesis and safety. In
Neural Engineering (NER), 2015 7th International
IEEE/EMBS Conference on, pages 648–651.
Jimnez-Fabin, R. and Verlinden, O. (2012). Review of
control algorithms for robotic ankle systems in lower-
limb orthoses, prostheses, and exoskeletons. Medical
Engineering & Physics, 34(4):397 – 408.
Jin, S.-H., Lin, P., and Hallett, M. (2010). Linear and non-
linear information flow based on time-delayed mu-
tual information method and its application to cor-
ticomuscular interaction. Clinical Neurophysiology,
121(3):392–401.
Klein, J. P. and Moeschberger, M. L. (2003). Survival
analysis: techniques for censored and truncated data.
Springer Science & Business Media.
Lawless, J. F. (2011). Statistical models and methods for
lifetime data, volume 362. John Wiley & Sons.
Maciel, C. D., Simpson, D. M., and Newland, P. L. (2012).
Inference about multiple pathways in motor control
limb in locust. In BIOSIGNALS, pages 69–75.
MacKenzie, T., Gifford, A. H., Sabadosa, K. A., Quinton,
H. B., Knapp, E. A., Goss, C. H., and Marshall, B. C.
(2014). Longevity of patients with cystic fibrosis in
2000 to 2010 and beyond: survival analysis of the
cystic fibrosis foundation patient registry. Annals of
internal medicine, 161(4):233–241.
Manal, K. and Rose, W. (2007). A general solution for the
time delay introduced by a low-pass butterworth digi-
tal filter: An application to musculoskeletal modeling.
Journal of Biomechanics, 40(3):678 – 681.
Meyer-Baese, A. and Schmid, V. J. (2014). Pattern Recog-
nition and Signal Analysis in Medical Imaging. Else-
vier.
Newland, P. L. and Kondoh, Y. (1997). Dynamics of neu-
rons controlling movements of a locust hind leg ii.
flexor tibiae motor neurons. Journal of Neurophysi-
ology, 77(4):1731–1746.
Nichols, J., Seaver, M., Trickey, S., Todd, M., Olson, C.,
and Overbey, L. (2005). Detecting nonlinearity in
structural systems using the transfer entropy. Physi-
cal Review E, 72(4):046217.
Pampu, N., Vicente, R., Muresan, R., Priesemann, V.,
Siebenhuhner, F., and Wibral, M. (2013). Transfer
entropy as a tool for reconstructing interaction delays
in neural signals. In Signals, Circuits and Systems
(ISSCS), 2013 International Symposium on, pages 1–
4.
Runge, J., Heitzig, J., Marwan, N., and Kurths, J. (2012).
Quantifying causal coupling strength: A lag-specific
measure for multivariate time series related to transfer
entropy. Phys. Rev. E, 86:061121.
Santos, F. P. and Maciel, C. D. (2014). A pso approach for
learning transition structures of higher-order dynamic
bayesian networks. In Biosignals and Biorobotics
Conference (2014): Biosignals and Robotics for Bet-
ter and Safer Living (BRC), 5th ISSNIP-IEEE, pages
1–6.
Schreiber, T. (2000). Measuring information transfer. Phys-
ical review letters, 85(2):461.
Schwalger, T., Droste, F., and Lindner, B. (2015). Statis-
tical structure of neural spiking under non-poissonian
or other non-white stimulation. Journal of Computa-
tional Neuroscience, 39(1):29–51.
Subramaniam, K., Hooker, C. I., Biagianti, B., Fisher,
M., Nagarajan, S., and Vinogradov, S. (2015). Neu-
ral signal during immediate reward anticipation in
schizophrenia: Relationship to real-world motivation
and function. NeuroImage: Clinical, 9:153 – 163.
Vicente, R., Wibral, M., Lindner, M., and Pipa, G. (2011).
Transfer entropya model-free measure of effective
connectivity for the neurosciences. Journal of Com-
putational Neuroscience, 30(1):45–67.
Vidal-Gadea, A. G., Jing, X., Simpson, D., Dewhirst, O. P.,
Kondoh, Y., Allen, R., and Newland, P. L. (2010).
Coding characteristics of spiking local interneurons
during imposed limb movements in the locust. Jour-
nal of neurophysiology, 103(2):603–615.
Walpole, R., Myers, R., Myers, S., and Ye, K. (2014). Prob-
ability and statistics for engineers and scientists.
Wibral, M., Wollstadt, P., Meyer, U., Pampu, N., Priese-
mann, V., and Vicente, R. (2012). Revisiting wiener’s
principle of causality #x2014; interaction-delay re-
construction using transfer entropy and multivariate
analysis on delay-weighted graphs. In Engineering in
Medicine and Biology Society (EMBC), 2012 Annual
International Conference of the IEEE, pages 3676–
3679.
Zhang, Q., Yang, X., Li, P., Huang, G., Feng, S., Shen, C.,
Han, B., Zhang, X., Jin, F., Xu, F., and Lu, T. J. (2015).
Bioinspired engineering of honeycomb structure us-
ing nature to inspire human innovation. Progress in
Materials Science, 74:332 – 400.
BIOSIGNALS 2016 - 9th International Conference on Bio-inspired Systems and Signal Processing
226