Comparative Study on Time Course Data.
Bioinformatics Research and Applications. Springer
International Publishing, 176-187.
American Diabetes Association 2013. Standards of
medical care in diabetes. Diabetes Care 36 (1): S11-
S66.
Dagliati, A., Sacchi, L., Bucalo, M., Segagni, D.,
Zarkogianni, K., Martinez Millana, A., Cancela, J.,
Sambo, F., Fico, G., Meneu Barreira, M.T., Cerra, C.,
Nikita, K., Cobelli, C., Chiovato, L., Arredondo, M.T.,
Bellazzi, R. 2014a. A Data Gathering Framework to
Collect Type 2 Diabetes Patients Data. Biomedical
and Health Informatics (BHI), 2014 IEEE-EMBS
International Conference Proceedings. 244 – 247.
Dagliati A., Sacchi, L., Cerra, C., Leporati, P., De Cata, P.,
Chiovato, L., Holmes, J.H., Bellazzi, R. 2014b.
Temporal Data Mining and Process Mining
Techniques to Identify Cardiovascular Risk-
Associated Clinical Pathways in Type 2 Diabetes
Patients Biomedical and Health Informatics (BHI),
2014 IEEE-EMBS International Conference
Proceedings. 240 – 243.
Gatti, E., Luciani, D., Stella, F. 2012. A continuous time
Bayesian network model for cardiogenic heart failure.
Flexible Services and Manufacturing Journal 4(4),
496—515.
International Diabetes Federation. 2014. IDF Diabetes
Atlas. 6th edn, 2014 Update. Brussels, Belgium:
International Diabetes Federation.
Liu, B., Thiagarajan, P.S., Hsu, D. 2009. Probabilistic
Approximations of Signaling Pathway Dynamics.
Computational Methods in Systems Biology. Springer
Berlin Heidelberg.
McEwan, P., Foos, V., Palmer, J.L., Lamotte, M., Lloyd,
A., Grant, D. 20014. Validation of the IMS CORE
Diabetes Model. Value Health (6):714-24.
Marini, S., Trifoglio, E., Barbarini, N., Sambo, F., Di
Camillo, B., Malovini, A., Manfrini, M., Cobelli, C.,
Bellazzi, R. 2015. A Dynamic Bayesian Network
model for long-term simulation of clinical
complications in type 1 diabetes. Journal of
Biomedical Informatics, ePub ahead of print.
Nodelman, U., Shelton, C.R., Koller, D. 2002a.
Continuous time bayesian networks. UAI02
Proceedings, 378—387.
Nodelman, U., Shelton, C.R., and Koller, D. 2002b.
Learning continuous time bayesian networks. In Proc.
of the 19th Conf. on Uncertainty in Artificial
Intelligence, pages 451–458.
Shelton, C.R., Fan, Y., Lam, W., Lee, J., Xu. J. 2010.
Continuous Time Bayesian Network Reasoning and
Learning Engine. The Journal of Machine Learning
Research 11: 1137-1140.
Solano, M.P., Goldberg, R.B. 2006. Lipid management in
type 2 diabetes. Clinical Diabetes 24(1): 27-32.
Tarride, J.E., Hopkins, R., Blackhouse, G., Bowen, J.M.,
Bischof, M., Von Key-serlingk, C., O’Reilly, D., Xie,
F., Goeree, R. 2010. A review of methods used in long-
term cost-effectiveness models of diabetes mellitus
treatment. Pharmacoeconomics. 28(4):255-77.
Wang, X., Sontag, D., Wang, F. 2014. Unsupervised
Learning of Disease Progression Models. Proceedings
of the 20th ACM SIGKDD international conference
on knowledge discovery and data mining, 85-94.
APPENDIX
Figure 1: The learned CTBN network.