of the 3D face could be improved using more accurate
3D shape than a simple ellipsoid. This method could
also be extended to pitch angle estimation. In this pa-
per, we propose two methods to estimate head yaw
angles (HYE1 and HYE2). A hybrid method which
uses HYE1 or HYE2 depending on the size of the
connected component could be defined to take advan-
tages of both approaches.
ACKNOWLEDGEMENTS
This work was supported by ”Empathic Products”,
ITEA2 1105 and the authors thank IRCICA USR
3380 for financial support.
REFERENCES
Aissaoui, A., Martinet, J., and Djeraba, C. (2014).
Rapid and accurate face depth estimation in passive
stereo systems. Multimedia Tools and Applications,
72(3):2413–2438.
Auguste, R. (2014). Racv library can be downloaded from.
https://github.com/auguster/libRacv/.
Balasubramanian, V., Ye, J., and Panchanathan, S. (2007).
Biased manifold embedding: A framework for
person-independent head pose estimation. In CVPR,
2007. IEEE Conference on, pages 1–7.
Black, J., Gargesha, M., Kahol, K., Kuchi, P., and Pan-
chanathan, S. (2002). A framework for performance
evaluation of face recognition algorithms. In ITCOM,
Internet Multimedia Systems II, Boston.
Blanz, V. and Vetter, T. (1999). A morphable model for
the synthesis of 3d faces. In Proceedings of the 26th
Annual Conference on Computer Graphics and Inter-
active Techniques, SIGGRAPH ’99, pages 187–194,
New York, NY, USA. ACM Press/Addison-Wesley
Publishing Co.
Dahmane, A., Larabi, S., Bilasco, I. M., and Djeraba, C.
(2014). Head Pose Estimation Based on Face Sym-
metry Analysis. Signal, Image and Video Processing.
Danisman, T. and Bilasco, I. M. (2015). In-plane face ori-
entation estimation in still images. Multimedia Tools
and Applications, pages 1–31.
Gourier, N., Hall, D., and Crowley, J. L. (2004). Estimating
Face Orientation from Robust Detection of Salient Fa-
cial Features. In Proceedings of Pointing 2004, ICPR,
International Workshop on Visual Observation of De-
ictic Gestures.
Gourier, N., Maisonnasse, J., Hall, D., and Crowley, J.
(2007). Head pose estimation on low resolution im-
ages. In Stiefelhagen, R. and Garofolo, J., editors,
Multimodal Technologies for Perception of Humans,
volume 4122 of LNCS, pages 270–280. Springer
Berlin Heidelberg.
Ji, H., Liu, R., Su, F., Su, Z., and Tian, Y. (2011). Robust
head pose estimation via convex regularized sparse re-
gression. In ICIP, 2011, pages 3617–3620.
Jung, S.-U. and Nixon, M. (2010). On using gait biomet-
rics to enhance face pose estimation. In Biometrics:
Theory Applications and Systems, 2010 Fourth IEEE
International Conference on, pages 1–6.
Kwon, O., Chun, J., and Park, P. (2006). Cylindrical model-
based head tracking and 3d pose recovery from se-
quential face images. In Proceedings of the 2006 In-
ternational Conference on Hybrid Information Tech-
nology - Volume 01, pages 135–139, Washington, DC,
USA. IEEE Computer Society.
Liu, X., Lu, H., and Li, W. (2010). Multi-manifold mod-
eling for head pose estimation. In ICIP, 2010, pages
3277–3280.
Murphy-Chutorian, E. and Trivedi, M. (2009). Head pose
estimation in computer vision: A survey. PAMI, IEEE
Transactions on, 31(4):607–626.
Narayanan, A., Kaimal, R., and Bijlani, K. (2014). Yaw
estimation using cylindrical and ellipsoidal face mod-
els. Intelligent Transportation Systems, IEEE Trans-
actions on, 15(5):2308–2320.
Rother, C., Kolmogorov, V., and Blake, A. (2004). ”grab-
cut”: Interactive foreground extraction using iterated
graph cuts. ACM Trans. Graph., 23(3):309–314.
Stiefelhagen, R. (2004). Estimating head pose with neural
nnetwork - results on the pointing04 icpr workshop
evaluation data. In Pointing 2004 Workshop: Visual
Observation of Deictic Gestures.
Tu, J., Fu, Y., Hu, Y., and Huang, T. (2007). Evaluation
of head pose estimation for studio data. In Stiefel-
hagen, R. and Garofolo, J., editors, Multimodal Tech-
nologies for Perception of Humans, volume 4122 of
LNCS, pages 281–290. Springer Berlin Heidelberg.
Viola, P. and Jones, M. (2001). Rapid object detection using
a boosted cascade of simple features. pages 511–518.
Zaidan, A., Ahmad, N., Karim, H. A., Larbani, M., Zaidan,
B., and Sali, A. (2014). Image skin segmentation
based on multi-agent learning bayesian and neural
network. Engineering Applications of Artificial Intel-
ligence, 32:136 – 150.
VISAPP 2016 - International Conference on Computer Vision Theory and Applications
524