Chen, S.-G. and Wu, J.-Y. (2004). Estimating normal vec-
tors and curvatures by centroid weights. Computer
Aided Geometric Design, 21(5):447 – 458.
Corsini, M., Cignoni, P., and Scopigno, R. (2012). Efficient
and flexible sampling with blue noise properties of tri-
angular meshes. IEEE Transactions on Visualization
and Computer Graphics, 18(6):914–924.
Dou, M., Taylor, J., Fuchs, H., Fitzgibbon, A., and Izadi, S.
(2015). 3d scanning deformable objects with a single
rgbd sensor. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).
Grassia, F. S. (1998). Practical parameterization of rotations
using the exponential map. Journal of Graphics Tools,
3(3):29–48.
Huang, Q.-X., Adams, B., Wicke, M., and Guibas, L. J.
(2008). Non-rigid registration under isometric defor-
mations. In Proceedings of the Symposium on Geom-
etry Processing, SGP ’08, pages 1449–1457, Aire-la-
Ville, Switzerland. Eurographics Association.
Jian, B. and Vemuri, B. (2011). Robust point set registra-
tion using gaussian mixture models. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
33(8):1633–1645.
Li, H., Adams, B., Guibas, L. J., and Pauly, M. (2009). Ro-
bust single-view geometry and motion reconstruction.
ACM Transactions on Graphics, 28(5):175:1–175:10.
Li, H., Sumner, R. W., and Pauly, M. (2008). Global cor-
respondence optimization for non-rigid registration of
depth scans. In Proceedings of the Symposium on Ge-
ometry Processing, SGP ’08, pages 1421–1430, Aire-
la-Ville, Switzerland. Eurographics Association.
Li, H., Vouga, E., Gudym, A., Luo, L., Barron, J. T., and
Gusev, G. (2013). 3d self-portraits. ACM Transactions
on Graphics, 32(6):1–9.
Myronenko, A. and Song, X. (2010). Point set registration:
Coherent point drift. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 32(12):2262–
2275.
Newcombe, R. A., Fox, D., and Seitz, S. M. (2015). Dy-
namicfusion: Reconstruction and tracking of non-
rigid scenes in real-time. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).
Peyr
´
e, G. and Cohen, L. D. (2006). Geodesic remeshing us-
ing front propagation. International Journal of Com-
puter Vision, 69(1):145–156.
Rouhani, M., Boyer, E., and Sappa, A. D. (2014). Non-
rigid registration meets surface reconstruction. In 3D
Vision (3DV), 2014 2nd International Conference on,
volume 2, pages 617–624.
Sagawa, R., Akasaka, K., Yagi, Y., Hamer, H., and
Van Gool, L. (2009). Elastic convolved icp for the
registration of deformable objects. In Computer Vi-
sion Workshops (ICCV Workshops), 2009 IEEE 12th
International Conference on, pages 1558–1565.
Schmidt, J. and Niemann, H. (2001). Using quaternions for
parametrizing 3-d rotations in unconstrained nonlin-
ear optimization. In Vision, Modeling, and Visualiza-
tion 2001, pages 399–406. AKA/IOS Press.
Sumner, R. W., Schmid, J., and Pauly, M. (2007). Embed-
ded deformation for shape manipulation. ACM Trans-
actions on Graphics, 26(3).
Terzakis, G., Culverhouse, P., Bugmann, G., Sharma, S.,
and Sutton, R. (2012). A recipe on the parameter-
ization of rotation matrices for non-linear optimiza-
tion using quaternions. Technical report, Center for
Robotics and Neural Systems, Plymouth University,
Plymouth, UK.
Vlasic, D., Peers, P., Baran, I., Debevec, P., Popovi
´
c, J.,
Rusinkiewicz, S., and Matusik, W. (2009). Dynamic
shape capture using multi-view photometric stereo.
ACM Transactions on Graphics, 28(5):174:1–174:11.
Zeng, M., Zheng, J., Cheng, X., and Liu, X. (2013).
Templateless quasi-rigid shape modeling with implicit
loop-closure. In Computer Vision and Pattern Recog-
nition (CVPR), 2013 IEEE Conference on, pages 145–
152.
Zhang, L., Snavely, N., Curless, B., and Seitz, S. M. (2004).
Spacetime faces: High resolution capture for model-
ing and animation. ACM Transactions on Graphics,
23(3):548–558.
Zhang, Q., Fu, B., Ye, M., and Yang, R. (2014). Quality dy-
namic human body modeling using a single low-cost
depth camera. In Computer Vision and Pattern Recog-
nition (CVPR), 2014 IEEE Conference on, pages 676–
683.
Zhang, R., Chen, X., Shiratori, T., Tong, X., and Liu, L.
(2015). An efficient volumetric method for non-rigid
registration. Graphical Models, 79:1 – 11.
Zollh
¨
ofer, M., Nießner, M., Izadi, S., Rehmann, C., Zach,
C., Fisher, M., Wu, C., Fitzgibbon, A., Loop, C.,
Theobalt, C., and Stamminger, M. (2014). Real-time
non-rigid reconstruction using an rgb-d camera. ACM
Transactions on Graphics, 33(4):156:1–156:12.
APPENDIX
In iterative non-linear optimization process of our
method, calculation of Jacobian matrix plays an im-
portant role for correctly updating the parameters at
each iteration. This process relates to computing the
derivatives of each rotation matrix R
j
with respect to
a given value (x
j
,y
j
,z
j
) of a point ψ
j
on the equatorial
plane.
The derivatives of a rotation matrix R with respect
to a point ψ are calculated using the chain rule as fol-
lows (for simplicity, we remove the index j ):
∂R(q(ψ))
∂x
=
3
∑
n=0
∂R(q)
∂q
n
∂q
n
(ψ)
∂x
(14)
∂R(q(ψ))
∂y
=
3
∑
n=0
∂R(q)
∂q
n
∂q
n
(ψ)
∂y
(15)
∂R(q(ψ))
∂z
=
3
∑
n=0
∂R(q)
∂q
n
∂q
n
(ψ)
∂z
(16)
A rotation matrix parameterized by a unit-
quaternion is given by the following formula:
GRAPP 2016 - International Conference on Computer Graphics Theory and Applications
48