Jin, J. and Szekely, P. (2009). QueryMarvel: A visual query
language for temporal patterns using comic strips. In
Proc. VL/HCC ’09, pages 207–214.
Kapler, T. and Wright, W. (2005). GeoTime information vi-
sualization. Information Visualization, 4(2):136–146.
Kim, P. H. and Giunchiglia, F. (2012). Life logging prac-
tice for human behavior modeling. In Proc. SMC ’12,
pages 2873–2878.
Krstaji
´
c, M., Bertini, E., and Keim, D. (2011). CloudLines:
Compact display of event episodes in multiple time-
series. IEEE TVCG, 17(12):2432–2439.
Kr
¨
uger, R., Herr, D., Haag, F., and Ertl, T. (2015). Inspector
Gadget: Integrating data preprocessing and orchestra-
tion in the visual analysis loop. In EuroVis Workshop
on Visual Analytics (EuroVA). The Eurographics As-
sociation.
Kr
¨
uger, R., Thom, D., and Ertl, T. (2014). Visual analy-
sis of movement behavior using web data for context
enrichment. In Proc. PacificVis ’14, pages 193–200.
IEEE.
Kr
¨
uger, R., Thom, D., W
¨
orner, M., Bosch, H., and Ertl, T.
(2013). TrajectoryLenses – A set-based filtering and
exploration technique for long-term trajectory data.
Comput. Graphics Forum, 2013(3):451–460.
Kumar, C., Heuten, W., and Boll, S. (2013). Geographi-
cal queries beyond conventional boundaries: Regional
search and exploration. In Proc. GIR ’13, pages 84–
85. ACM.
Kumar, V., Furuta, R., and Allen, R. B. (1998). Metadata
visualization for digital libraries: Interactive timeline
editing and review. In Proc. DL ’98, pages 126–133.
ACM.
Makanju, A., Zincir-Heywood, A. N., and Milios, E. E.
(2011). Storage and retrieval of system log events us-
ing a structured schema based on message type trans-
formation. In Proc. SAC ’11, pages 528–533. ACM.
Marcus, A., Bernstein, M. S., Badar, O., Karger, D. R.,
Madden, S., and Miller, R. C. (2011). Twitinfo: Ag-
gregating and visualizing microblogs for event explo-
ration. In Proc. CHI ’11, pages 227–236. ACM.
Monroe, M., Lan, R., Morales del Olmo, J., Shneiderman,
B., Plaisant, C., and Millstein, J. (2013). The chal-
lenges of specifying intervals and absences in tempo-
ral queries: A graphical language approach. In Proc.
CHI ’13, pages 2349–2358. ACM.
Morris, A., Abdelmoty, A., El-Geresy, B., and Jones,
C. (2004). A filter flow visual querying language
and interface for spatial databases. GeoInformatica,
8(2):107–141.
Nguyen, T., Loke, S., and Torabi, T. (2007). The Commu-
nity Stack: Concept and prototype. In Proc. AINAW
’07, volume 2, pages 52.–58.
Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., An-
drienko, N., Bogorny, V., Damiani, M. L., Gkoulalas-
Divanis, A., Macedo, J., Pelekis, N., Theodoridis, Y.,
and Yan, Z. (2013). Semantic trajectories modeling
and analysis. ACM Comput. Surv., 45(4):42:1–42:32.
Peuquet, D. J. and Duan, N. (1995). An event-based spa-
tiotemporal data model (ESTDM) for temporal anal-
ysis of geographical data. Int. J. Geogr. Inf. Syst.,
9(1):7–24.
Pirolli, P. and Card, S. (2005). The sensemaking process
and leverage points for analyst technology as iden-
tified through cognitive task analysis. In Proc. Int’l
Conf. on Intelligence Analysis, pages 2–4. MITRE.
Plaisant, C., Milash, B., Rose, A., Widoff, S., and Shnei-
derman, B. (1996). LifeLines: Visualizing personal
histories. In Proc. CHI ’96, pages 221–227. ACM.
Russell, A., Smart, P., Braines, D., and Shadbolt, N. (2008).
NITELIGHT: A graphical tool for semantic query
construction. In Proc. SWUI ’08, volume 543 of
CEUR-WS.
Seifert, I. (2011). A pool of queries: Interactive multidimen-
sional query visualization for information seeking in
digital libraries. Information Visualization, 10(2):97–
106.
Shneiderman, B. (1994). Dynamic queries for visual infor-
mation seeking. IEEE Software, 11(6):70–77.
Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov, E.,
Zheleznyakov, D., and Horrocks, I. (2013). Op-
tiqueVQS: Towards an ontology-based visual query
system for big data. In Proc. MEDES ’13, pages 119–
126. ACM.
Sun, G., Liu, Y., Wu, W., Liang, R., and Qu, H. (2014).
Embedding temporal display into maps for occlusion-
free visualization of spatio-temporal data. In Proc.
PacificVis ’14, pages 185–192. IEEE.
Tao, C., Wongsuphasawat, K., Clark, K., Plaisant, C.,
Shneiderman, B., and Chute, C. G. (2012). Towards
event sequence representation, reasoning and visual-
ization for EHR data. In Proc. IHI ’12, pages 801–
806. ACM.
Tominski, C., Schumann, H., Andrienko, G., and An-
drienko, N. (2012). Stacking-based visualization of
trajectory attribute data. IEEE TVCG, 18(12):2565–
2574.
Visual Analytics Community (2014). VAST 2014 Chal-
lenge – the Kronos incident. http://va commu-
nity.org/VAST+Challenge+2014.
Westermann, U. and Jain, R. (2007). Toward a common
event model for multimedia applications. IEEE Mul-
tiMedia, 14(1):19–29.
Wongsuphasawat, K., Plaisant, C., Taieb-Maimon, M., and
Shneiderman, B. (2012). Querying event sequences
by exact match or similarity search: Design and em-
pirical evaluation. Interact. Comput., 24(2):55–68.
Wu, S., Otmane, S., Moreau, G., and Servi
`
eres, M. (2013).
Design of a visual query language for geographic
information system on a touch screen. In Human-
Computer Interaction. Interaction Modalities and
Techniques, volume 8007 of LNCS, pages 530–539.
Springer.
Zgraggen, E., Drucker, S. M., Fisher, D., and DeLine, R.
(2015). (s—qu)eries: Visual regular expressions for
querying and exploring event sequences. In Proc. CHI
’15, pages 2683–2692. ACM.
Zhu, X. Y., Guo, W., Huang, L., Hu, T., and Gao, W. X.
(2013). Pan-information location map. ISPRS
Archives, XL-4(4):57–62.
VESPa: A Pattern-based Visual Query Language for Event Sequences
61