Figure 9: Random samples projected by a common shape and appearance model using COCA.
ACKNOWLEDGEMENTS
We would like to thank Clemens Blumer, Antonia
Bertschinger and Anna Engler for their valuable in-
puts and proofreading.
REFERENCES
Blanz, V. and Vetter, T. (1999). A morphable model for
the synthesis of 3d faces. In Proceedings of the 26th
annual conference on Computer graphics and interac-
tive techniques, pages 187–194. ACM Press/Addison-
Wesley Publishing Co.
Cootes, T. F., Edwards, G. J., and Taylor, C. J. (1998). Ac-
tive appearance models. In Computer VisionECCV98,
pages 484–498. Springer.
Edwards, G. J., Lanitis, A., Taylor, C. J., and Cootes, T. F.
(1998). Statistical models of face imagesimproving
specificity. Image and Vision Computing, 16(3):203–
211.
Genest, C., Ghoudi, K., and Rivest, L.-P. (1995). A
semiparametric estimation procedure of dependence
parameters in multivariate families of distributions.
Biometrika, 82(3):543–552.
Han, F. and Liu, H. (2012). Semiparametric principal com-
ponent analysis. In Advances in Neural Information
Processing Systems, pages 171–179.
Joe, H. (1997). Multivariate models and multivariate de-
pendence concepts. CRC Press.
Jolliffe, I. (2002). Principal component analysis. Wiley
Online Library.
Lothar Sachs, J. H. (2006). Angewandte Statistik. Springer
Berlin Heidelberg, 7 edition.
Massey Jr, F. J. (1951). The kolmogorov-smirnov test for
goodness of fit. Journal of the American statistical
Association, 46(253):68–78.
Mohammed, U., Prince, S. J., and Kautz, J. (2009). Visio-
lization: generating novel facial images. ACM Trans-
actions on Graphics (TOG), 28(3):57.
Nelsen, R. B. (2013). An introduction to copulas, volume
139. Springer Science & Business Media.
Paysan, P., Knothe, R., Amberg, B., Romdhani, S., and Vet-
ter, T. (2009). A 3d face model for pose and illumi-
nation invariant face recognition. In Advanced Video
and Signal Based Surveillance, 2009. AVSS’09. Sixth
IEEE International Conference On, pages 296–301.
IEEE.
Rasmussen, C. E. (1999). The infinite gaussian mixture
model. In NIPS, volume 12, pages 554–560.
Sch
¨
onborn, S., Forster, A., Egger, B., and Vetter, T. (2013).
A monte carlo strategy to integrate detection and
model-based face analysis. In Pattern Recognition,
pages 101–110. Springer.
Schumacher, M. and Blanz, V. (2015). Exploration of the
correlations of attributes and features in faces. In
Automatic Face and Gesture Recognition (FG), 2015
11th IEEE International Conference and Workshops
on, pages 1–8. IEEE.
Sirovich, L. and Kirby, M. (1987). Low-dimensional pro-
cedure for the characterization of human faces. JOSA
A, 4(3):519–524.
Styner, M. A., Rajamani, K. T., Nolte, L.-P., Zsemlye, G.,
Sz
´
ekely, G., Taylor, C. J., and Davies, R. H. (2003).
Evaluation of 3d correspondence methods for model
building. In Information processing in medical imag-
ing, pages 63–75. Springer.
Tsukahara, H. (2005). Semiparametric estimation in copula
models. Canadian Journal of Statistics, 33(3):357–
375.
Turk, M., Pentland, A. P., et al. (1991). Face recogni-
tion using eigenfaces. In Computer Vision and Pat-
tern Recognition, 1991. Proceedings CVPR’91., IEEE
Computer Society Conference on, pages 586–591.
IEEE.
Walker, M. and Vetter, T. (2009). Portraits made to measure:
Manipulating social judgments about individuals with
a statistical face model. Journal of Vision, 9(11):12.
GRAPP 2016 - International Conference on Computer Graphics Theory and Applications
58